3' RNA-Seq (3'SEQ) analysis gene expression profiling at G1-S transition in human embryonic stem cells (hESCs) and hESC-derived endoderm cells
Ontology highlight
ABSTRACT: In this report, we examine transcripts on a genome-wide level between the synchronized cell cycles of hESCs and hESC-derived endoderm cells. We found 10347, 10299 and 10362 genes expressed in the G1, G1/S, and S phase of hESCs, respectively; 10333, 10227 and 10215 genes expressed at the G1, G1/S and S phase of derived endoderm. We compared the transcriptome between these data sets and identified genes with differentiated phase expression between hESCs and hESC-derived endoderm cells. Examination of the transcriptome at the G1-S transition in hESCs compared to hESC-derived endoderm cells.
Project description:In this report, we examine transcripts on a genome-wide level between the synchronized cell cycles of hESCs and hESC-derived endoderm cells. We found 10347, 10299 and 10362 genes expressed in the G1, G1/S, and S phase of hESCs, respectively; 10333, 10227 and 10215 genes expressed at the G1, G1/S and S phase of derived endoderm. We compared the transcriptome between these data sets and identified genes with differentiated phase expression between hESCs and hESC-derived endoderm cells.
Project description:Activin/Nodal signalling is necessary to maintain pluripotency of human Embryonic Stem Cells (hESCs) and to induce their differentiation towards endoderm. However, the mechanisms by which Activin/Nodal signalling achieves these opposite functions remain unclear. To unravel these mechanisms, we examined the transcriptional network controlled in hESCs by Smad2 and Smad3 which represent the direct effectors of Activin/Nodal signalling. These analyses reveal that Smad2/3 participate in the control of the core transcriptional network characterising pluripotency which includes Oct-4, Nanog, FoxD3, Dppa4, Tert, Myc and UTF-1. In addition, similar experiments performed on endoderm cells confirm that a broad part of the transcriptional network directing differentiation is downstream of Smad2/3. Therefore, Activin/Nodal signalling appears to control divergent transcriptional networks in hESCs and in endoderm. Importantly, we observed an overlap between the transcriptional network downstream of Nanog and Smad2/3 in hESCs while functional studies showed that both factors cooperate to control the expression of pluripotency genes. Therefore, the effect of Activin/Nodal signalling on pluripotency and differentiation could be dictated by tissue specific Smad2/3 partners such as Nanog, explaining the mechanisms by which signalling pathways can orchestrate divergent cell fate decisions. Identification of Smad2/3 binding sites in pluripotent hESCs. 5 ChIP-Seq samples including 1 input control sample and 4 ChIP samples (two conditions x two replicates).
Project description:Human embryonic stem cells (hESC) and cancer cells rapidly divide with a short G1/S-phase causing increased replicative stress (RS). Since both in vitro cultured hESCs and most high-risk neuroblastomas have large chromosome 17q gains (17q+), we hypothesize that this may provide a "RS-resistance phenotype". We co-cultured parental cells and a derived hESC line with 17q+ under normal growth conditions and under RS. We could show a proliferative ad-vantage of hESC with 13q+17q+ over wild type by measurement of the cumulative growth and molecular analysis for chromosomal copy number analysis. To monitor effects of 17q+ on RS-resistance, cell cycle and transcriptome analysis were performed. In conclusion, we show that extra chromosomal aberrations, such as 17q+, provide proliferative advantage to hESC under RS and suggest that this phenomenon explains the high incidence of 17q+ in in vitro cultured hESC lines.
Project description:Human embryonic stem cells (hESC) and cancer cells rapidly divide with a short G1/S-phase causing increased replicative stress (RS). Since both in vitro cultured hESCs and most high-risk neuroblastomas have large chromosome 17q gains (17q+), we hypothesize that this may provide a "RS-resistance phenotype". We co-cultured parental cells and a derived hESC line with 17q+ under normal growth conditions and under RS. We could show a proliferative ad-vantage of hESC with 13q+17q+ over wild type by measurement of the cumulative growth and molecular analysis for chromosomal copy number analysis. To monitor effects of 17q+ on RS-resistance, cell cycle and transcriptome analysis were performed. In conclusion, we show that extra chromosomal aberrations, such as 17q+, provide proliferative advantage to hESC under RS and suggest that this phenomenon explains the high incidence of 17q+ in in vitro cultured hESC lines.
Project description:Human embryonic stem cells (hESC) and cancer cells rapidly divide with a short G1/S-phase causing increased replicative stress (RS). Since both in vitro cultured hESCs and most high-risk neuroblastomas have large chromosome 17q gains (17q+), we hypothesize that this may provide a "RS-resistance phenotype". We co-cultured parental cells and a derived hESC line with 17q+ under normal growth conditions and under RS. We could show a proliferative ad-vantage of hESC with 13q+17q+ over wild type by measurement of the cumulative growth and molecular analysis for chromosomal copy number analysis. To monitor effects of 17q+ on RS-resistance, cell cycle and transcriptome analysis were performed. In conclusion, we show that extra chromosomal aberrations, such as 17q+, provide proliferative advantage to hESC under RS and suggest that this phenomenon explains the high incidence of 17q+ in in vitro cultured hESC lines.
Project description:Tumor suppressor p53 promotes differentiation of human embryonic stem cells (hESCs), but an in-depth understanding of mechanism is lacking. Here, we define p53 functions in hESCs by genome wide profiling of p53 chromatin interactions and intersection with gene expression during early differentiation and in response to DNA damage. During differentiation, p53 targets and regulates a unique collection of genes, many of which encode transcription factors and developmental regulators with chromatin structure poised by OCT4 and NANOG and marked by repressive H3K27me3 in pluripotent hESCs. In contrast, genes associated with cell migration and motility are bound by p53 specifically after DNA damage. Surveillance functions of p53 in regulation of cell death and cell cycle genes are conserved during both DNA damage and differentiation. Our findings expand the registry of p53 -regulated genes in hESCs and define specific functions of p53 in opposing pluripotency, which are highly distinct from stress-induced p53 response in stem cells. Identification of p53 binding sites in hESC under three conditions : Pluripotent, DNA damaged, Differentiating
Project description:To elucidate the Nodal transcriptional network that governs endoderm formation, we used ChIP-Seq to identify genomic targets for SMAD2/3, SMAD3, SMAD4, FOXH1 and the active and repressive chromatin marks, H3K4me3 and H3K27me3, in human embryonic stem cells (hESCs) and derived endoderm. We demonstrate that while SMAD2/3, SMAD4 and FOXH1 target binding is highly dynamic, there is an optimal signature for driving endoderm commitment. Initially, this signature is marked by both H3K4me3 and H3K27me3 as a very broad bivalent domain in hESCs. Within the first 24 hours, at a few select promoters, SMAD2/3 accumulation coincides with H3K27me3 depletion so that these loci become selectively monovalent marked only by H3K4me3. The correlation between SMAD2/3 binding, monovalent formation and transcriptional activation suggests a mechanism by which SMAD proteins coordinate with chromatin at critical promoters to drive endoderm specification. Examination of 2 different histone modifications and 4 different transcription factor associations in 2 cell types. For transcription factor analysis, three biological replicate ChIPs were pooled from each antibody, as well as input controls, for both hESCs and derived endoderm. For histone modifications, two biological replicates for H3K4me3 and three for H3K27me3 were used.
Project description:Human cardiomyocytes can be generated from human embryonic stem cells (hESCs) in vitro by a variety of methods, including co-culture with visceral endoderm-like cell lines and growth factor directed differentiation as monolayers or three-dimensional embryonic bodies. To enable the identification, purification and characterisation of human embryonic stem cell derived cardiomyocytes (CMs) and cardiac progenitor cells (CPCs), we introduced sequences encoding GFP into the NKX2-5 locus by homologous recombination. We found that NKX2-5GFP hESCs facilitate quantification of cardiac differentiation, purification of hESC-derived committed cardiac progenitor cells and cardiomyocytes and the standardization of differentiation protocols.
Project description:Genome wide DNA methylation profiling of hESC-derived mesothelium (MesoT), hESCs and hESC-derived splanchnic mesoderm (SplM) compared to primary human tissue samples. The Illumina Infinium HumanMethylation450 BeadChip kit was used to obtain DNA methylation profiles across approximately 450,000 methylation sites. Samples include 2 WA09 hESCs, 2 hESC-derived splanchnic mesoderm and 3 hESC-derived mesothelium replicates.