ChIP-seq analysis of GATA4 in whole liver of adult mice
Ontology highlight
ABSTRACT: GATA4 regulates the liver development, but it's function and the gene transcriptional programs it regulates in the adult liver is unknown. In this study, we determined the genome-wide occupancy sites of GATA4 by performing ChIP-seq of whole livers. We have identified 4409 GATA4 enrichment peaks using two peak calling methods and irreproducible discovery rate (IDR) analysis. This corresponds to 3075 genes with GATA4 peaks within -5 kb of transcription start site (TSS) and +5 kb of transcription termination site (TTS). MEME analysis shows that approximately 90% of the peaks have the WGATAR motif, suggesting direct binding by GATA4. The peaks containing the WGATAR motif have a ChIP-seq higher tag enrichment score than peaks lacking the motif. Genome Regions Enrichment of Annotations Tool (GREAT) analysis of genes bound by GATA4 identified ontologies with liver specific functions. In summary, our study shows for the first time genome-wide occupancy profile of GATA4in the adult mouse liver. ChIP-sequencing of whole mouse livers from 2-3 month old mice
Project description:GATA4 regulates the liver development, but it's function and the gene transcriptional programs it regulates in the adult liver is unknown. In this study, we determined the genome-wide occupancy sites of GATA4 by performing ChIP-seq of whole livers. We have identified 4409 GATA4 enrichment peaks using two peak calling methods and irreproducible discovery rate (IDR) analysis. This corresponds to 3075 genes with GATA4 peaks within -5 kb of transcription start site (TSS) and +5 kb of transcription termination site (TTS). MEME analysis shows that approximately 90% of the peaks have the WGATAR motif, suggesting direct binding by GATA4. The peaks containing the WGATAR motif have a ChIP-seq higher tag enrichment score than peaks lacking the motif. Genome Regions Enrichment of Annotations Tool (GREAT) analysis of genes bound by GATA4 identified ontologies with liver specific functions. In summary, our study shows for the first time genome-wide occupancy profile of GATA4in the adult mouse liver.
Project description:GATA4 is expressed in the proximal 85% of small intestine where it promotes a proximal intestinal ('jejunal') identity while repressing a distal intestinal ('ileal') identity, but its molecular mechanisms are unclear. Here, we tested the hypothesis that GATA4 promotes a jejunal versus ileal identity in mouse intestine by directly activating and repressing specific subsets of absorptive enterocyte genes by modulating the acetylation of histone H3, lysine 27 (H3K27), a mark of active chromatin, at sites of GATA4 occupancy. Global analysis of mouse jejunal epithelium showed a statistically significant association of GATA4 occupancy with GATA4-regulated genes. Occupancy was equally distributed between down- and up-regulated targets, and occupancy sites showed a dichotomy of unique motif over-representation at down- versus up-regulated genes. H3K27ac enrichment at GATA4-binding loci that mapped to down-regulated genes (activation targets) was elevated, changed little upon conditional Gata4 deletion, and was similar to control ileum, whereas H3K27ac enrichment at GATA4-binding loci that mapped to up-regulated genes (repression targets) was depleted, increased upon conditional Gata4 deletion, and approached H3K27ac enrichment in wild-type control ileum. These data support the hypothesis that GATA4 both activates and represses intestinal genes, and show that GATA4 represses an ileal program of gene expression in the proximal small intestine by inhibiting the acetylation of H3K27. 2 samples were analyzed (1 ChIPseq, 1 input sample), control was done by confirming ChIP-qPCR on specific targets
Project description:GATA4 is expressed in the proximal 85% of small intestine where it promotes a proximal intestinal ('jejunal') identity while repressing a distal intestinal ('ileal') identity, but its molecular mechanisms are unclear. Here, we tested the hypothesis that GATA4 promotes a jejunal versus ileal identity in mouse intestine by directly activating and repressing specific subsets of absorptive enterocyte genes by modulating the acetylation of histone H3, lysine 27 (H3K27), a mark of active chromatin, at sites of GATA4 occupancy. Global analysis of mouse jejunal epithelium showed a statistically significant association of GATA4 occupancy with GATA4-regulated genes. Occupancy was equally distributed between down- and up-regulated targets, and occupancy sites showed a dichotomy of unique motif over-representation at down- versus up-regulated genes. H3K27ac enrichment at GATA4-binding loci that mapped to down-regulated genes (activation targets) was elevated, changed little upon conditional Gata4 deletion, and was similar to control ileum, whereas H3K27ac enrichment at GATA4-binding loci that mapped to up-regulated genes (repression targets) was depleted, increased upon conditional Gata4 deletion, and approached H3K27ac enrichment in wild-type control ileum. These data support the hypothesis that GATA4 both activates and represses intestinal genes, and show that GATA4 represses an ileal program of gene expression in the proximal small intestine by inhibiting the acetylation of H3K27.
Project description:Angiocrine signaling by liver sinusoidal endothelial cells (LSEC) regulates liver functions such as liver growth, metabolic maturation, and regeneration. Recently, we identified GATA4 as the master regulator of LSEC specification during development. Here, we studied endothelial GATA4 in the adult liver and in hepatic disease pathogenesis. We generated adult Clec4g-icretg/0xGata4fl/fl (Gata4LSEC KO) mice with deficiency of Gata4 in LSEC. Livers were analyzed by histology, electron microscopy, immunohistochemistry/immunofluorescence, in-situ hybridization, and by expression profiling and ATAC-sequencing of isolated LSEC. For liver regeneration, partial hepatectomy was performed. As models of liver fibrosis, CDAA diet and chronic CCl4 exposure were applied. Human single cell RNAseq data sets were analyzed for endothelial alterations in healthy and cirrhotic livers. Genetic Gata4 deficiency in LSEC in adult mice caused perisinusoidal liver fibrosis, hepatopathy and impaired liver regeneration. Sinusoidal capillarization and LSEC-to-continuous endothelial transdifferentiation were accompanied by a profibrotic angiocrine switch including de novo endothelial expression of hepatic stellate cell-activating cytokine PDGFB. Increased chromatin accessibility and amplification by activated Myc mediated angiocrine PDGFB expression. In CDAA diet-induced perisinusoidal liver fibrosis, LSEC showed repression of GATA4, activation of MYC and the profibrotic angiocrine switch already detected in Gata4LSEC KO mice. Comparison of CDAA-fed Gata4LSEC KO and control mice demonstrated that endothelial Gata4 indeed protects from dietary-induced perisinusoidal liver fibrosis. In human cirrhotic livers, Gata4-positive LSEC and endothelial Gata4 target genes were reduced, while non-LSEC endothelial cells and Myc target genes including PDGFB were enriched. Endothelial GATA4 protects from perisinusoidal liver fibrosis by repressing MYC activation and profibrotic angiocrine signaling on the chromatin level. Therapies targeting the GATA4/MYC/PDGFB/PDGFRβ axis offer a promising strategy for the prevention and treatment of liver fibrosis.
Project description:Angiocrine signaling by liver sinusoidal endothelial cells (LSEC) regulates liver functions such as liver growth, metabolic maturation, and regeneration. Recently, we identified GATA4 as the master regulator of LSEC specification during development. Here, we studied endothelial GATA4 in the adult liver and in hepatic disease pathogenesis. We generated adult Clec4g-icretg/0xGata4fl/fl (Gata4LSEC KO) mice with deficiency of Gata4 in LSEC. Livers were analyzed by histology, electron microscopy, immunohistochemistry/immunofluorescence, in-situ hybridization, and by expression profiling and ATAC-sequencing of isolated LSEC. For liver regeneration, partial hepatectomy was performed. As models of liver fibrosis, CDAA diet and chronic CCl4 exposure were applied. Human single cell RNAseq data sets were analyzed for endothelial alterations in healthy and cirrhotic livers. Genetic Gata4 deficiency in LSEC in adult mice caused perisinusoidal liver fibrosis, hepatopathy and impaired liver regeneration. Sinusoidal capillarization and LSEC-to-continuous endothelial transdifferentiation were accompanied by a profibrotic angiocrine switch including de novo endothelial expression of hepatic stellate cell-activating cytokine PDGFB. Increased chromatin accessibility and amplification by activated Myc mediated angiocrine PDGFB expression. In CDAA diet-induced perisinusoidal liver fibrosis, LSEC showed repression of GATA4, activation of MYC and the profibrotic angiocrine switch already detected in Gata4LSEC KO mice. Comparison of CDAA-fed Gata4LSEC KO and control mice demonstrated that endothelial Gata4 indeed protects from dietary-induced perisinusoidal liver fibrosis. In human cirrhotic livers, Gata4-positive LSEC and endothelial Gata4 target genes were reduced, while non-LSEC endothelial cells and Myc target genes including PDGFB were enriched. Endothelial GATA4 protects from perisinusoidal liver fibrosis by repressing MYC activation and profibrotic angiocrine signaling on the chromatin level. Therapies targeting the GATA4/MYC/PDGFB/PDGFRβ axis offer a promising strategy for the prevention and treatment of liver fibrosis.
Project description:Mechanisms regulating gene expression in the airway epithelium underlie its response to the environment. A network of transcription factors (TFs) and architectural proteins, modulate chromatin accessibility and recruit activating or repressive signals. Bromodomain-containing proteins function as TFs or by engaging methyltransferase or acetyltransferase activity to induce chromatin modifications. Here we investigate the role of Bromodomain Containing 8 (BRD8) in coordinating lung epithelial function. Sites of BRD8 occupancy genome-wide were mapped in human lung epithelial cell lines (Calu-3 and 16HBE14o-). CCCTC-Binding Factor (CTCF) was identified as a predicted co-factor of BRD8, based upon motif over-representation under BRD8 ChIP-seq peaks. Following siRNA-mediated depletion of BRD8, differentially expressed genes with peaks of BRD8 occupancy within 20 kb were subject to gene ontology process enrichment analysis. BRD8 targets are enriched for genes involved in the innate immune response and depletion of BRD8 increased the secretion of the antimicrobial peptide beta-defensin 1 and multiple chemokines.
Project description:Mechanisms regulating gene expression in the airway epithelium underlie its response to the environment. A network of transcription factors (TFs) and architectural proteins, modulate chromatin accessibility and recruit activating or repressive signals. Bromodomain-containing proteins function as TFs or by engaging methyltransferase or acetyltransferase activity to induce chromatin modifications. Here we investigate the role of Bromodomain Containing 8 (BRD8) in coordinating lung epithelial function. Sites of BRD8 occupancy genome-wide were mapped in human lung epithelial cell lines (Calu-3 and 16HBE14o-). CCCTC-Binding Factor (CTCF) was identified as a predicted co-factor of BRD8, based upon motif over-representation under BRD8 ChIP-seq peaks. Following siRNA-mediated depletion of BRD8, differentially expressed genes with peaks of BRD8 occupancy within 20 kb were subject to gene ontology process enrichment analysis. BRD8 targets are enriched for genes involved in the innate immune response and depletion of BRD8 increased the secretion of the antimicrobial peptide beta-defensin 1 and multiple chemokines.
Project description:Background: Interindividual differences in liver functions such as protein synthesis, lipid and carbohydrate metabolism and drug metabolism are influenced by epigenetic factors. The role of the epigenetic machinery in such processes has, however, been barely investigated. 5-hydroxymethylcytosine (5hmC) is a recently re-discovered epigenetic DNA modification that plays an important role in the control of gene expression. Results: In this study, we investigate 5hmC occurrence and genomic distribution in 8 fetal and 7 adult human liver samples in relation to ontogeny and function. LC-MS analysis shows that in the adult liver samples 5hmc comprises up to 1% of the total cytosine content, whereas in all fetal livers it is below 0.125%. Immunohistostaining of liver sections with a polyclonal anti-5hmC antibody shows that 5hmC is detected in most of the hepatocytes. Genome-wide mapping of the distribution of 5hmC in human liver samples by next-generation sequencing shows significant differences between fetal and adult livers. In adult livers, 5hmC occupancy is overrepresented in genes involved in active catabolic and metabolic processes, whereas 5hmC elements which are found in genes exclusively in fetal livers and disappear in the adult state, are more specific to pathways for differentiation and development. Conclusions: Our findings suggest that 5-hydroxymethylcytosine plays an important role in the development and function of the human liver and might be an important determinant for development of liver diseases as well as of the interindividual differences in drug metabolism and toxicity. 8 fetal and 7 adult human liver samples
Project description:mTOR and ERRα are key regulators of common metabolic processes. However, the extent of functional overlap between these two factors has not been investigated. ChIP-sequencing analyses on mouse liver reveal mTOR recruitment to regulatory regions of genes on a genome-wide scale including enrichment at genes shared with ERRα that are involved in the TCA cycle and lipogenesis pathway. A total of 9469 and 23226 peaks were identified for mTOR and ERRα ChIP-seq datasets, respectively. mTOR and ERRα mouse liver ChIP-seq datasets obtained from pooling 8 individual ChIPs from a chromatin pool of 26 livers.
Project description:To investigate the functional role of GATA4 in breast cancer cells, we employed ChIP-seq analysis to identify GATA4's genome-wide transcription targets. The ChIP experiment began with the use of anti-GATA4 antibodies in MCF-7 cells. Subsequently, GATA4-related DNA was unbiasedly amplified, labeled, and sequenced. Using Illumina Novaseq 6000, we identified numerous GATA4-specific binding peaks. We observed a strong enrichment of GATA4 on the promoters of specific genes involved in classical pathways. This study has provided us with new insights into the role of GATA4 in chromatin state and gene transcription in the context of breast cancer.