The transcription factor IRF4 is essential for T cell receptor affinity mediated metabolic programming and clonal expansion of T cells [RNA-seq]
Ontology highlight
ABSTRACT: We demonstrate that transcription factor IRF4 is induced in a T cell receptor (TCR) affinity-dependent manner and functions as a dose-dependent regulator of the metabolic function of activated T cells. IRF4 regulates the expression of key molecules required for aerobic glycolysis of effector T cells, and is essential for clonal expansion and maintenance of effector function of antigen-specific CD8+ T cells. Examination of gene expression profiles in six types of samples
Project description:We demonstrate that transcription factor IRF4 is induced in a T cell receptor (TCR) affinity-dependent manner and functions as a dose-dependent regulator of the metabolic function of activated T cells. IRF4 regulates the expression of key molecules required for aerobic glycolysis of effector T cells, and is essential for clonal expansion and maintenance of effector function of antigen-specific CD8+ T cells. Examination of binding sites of transcription factor IRF4 in mouse CD8+ T cells.
Project description:Since its discovery in 2004, graphene nanosheets (GNSs) have been extensively studied for their unique properties that enabe multiple applications, including in electronics, catalysis, biomedicine, and environmental fields.The global graphene market is predicted to rise from $620 million in 2020 to $1.48 billion in 2025.3 However, with the increasing production and widespread application of GNSs, there is also an increased likelihood of GNSs-based waste entering the aquatic environment, raising cocners over potential environmental damage.
Project description:Upon encounter with antigen, mature B cells undergo complex changes in their physiological state and anatomical localization, and initiate a differentiation process that ultimately produces antibody-secreting cells (ASCs), a major effector population of the immune system. To better characterize this process we have defined the transcriptome of all stages of B cell terminal differentiation by performing a large scale RNA-seq experiment. This analysis provides a molecular signature of ASC populations that highlights the stark transcriptional divide between B cells and plasma cells, and also enables the demarcation ASCs based on location, cell cycle status and maturity. The gene expression changes strongly correlated with cell division history and the acquisition of permissive histone modifications and were clearly evident in the small subset of regulatory genes containing super-enhancers. These findings highlight the core transcriptional program that guides B cell terminal differentiation and the production of antibody, essential processes in the immune response. Transcriptional profiling of ex vivo and in vitro B cell and plasma cell populations in mice using RNA sequencing
Project description:The oomycete pathogen Phytophthora sojae causes root rot of soybean. During infection, the pathogen is thought to deliver dozens, if not hundreds, of effector proteins into the host to manipulate intracellular systems. Although these pathogen proteins often exhibit similar N-terminal delivery domains, the remaining effector region is rarely homologous to known protein domains, making it difficult to predict its biochemical function during infection. As a complement to studies in the natural host, Saccharomyces cerevisiae has been successfully used as a model system to explore the biochemical function of individual pathogen effectors. The presumption is that many effectors target conserved eukaryotic pathways in the host and consequently the expression of effectors in yeast will confer corresponding phenotypes. Indeed, putative effector functions identified using yeast functional genomic approaches have subsequently been validated in the natural host. Over-expression of the Phytophthora sojae effector Avh172 (PsAvh172) inhibits the growth of Saccharomyces cerevisiae, suggesting that the effector targets a biological pathway conserved with plants. In this study, the transcriptomes of yeast expressing PsAvh172 or an empty vector were compared to examine the global transcriptional response, in hopes of discerning the effectors biochemical target.
Project description:Subtypes of innate lymphoid cells (ILC), defined by effector function and transcription factor expression, have recently been identified. In the adult, ILC derive from common lymphoid progenitors in bone marrow, although transcriptional regulation of the developmental pathways involved remains poorly defined. TOX is required for development of lymphoid tissue inducer cells, a type of ILC3 required for lymph node organogenesis, and NK cells, a type of ILC1. We show here that production of multiple ILC lineages requires TOX, as a result of TOX-dependent development of common ILC progenitors. Comparative transcriptome analysis demonstrated failure to induce various aspects of the ILC gene program in the absence of TOX, implicating this nuclear factor as a key early determinant of ILC lineage specification. TOX KO vs. wild tyype
Project description:The androgen receptor (AR) is overexpressed and hyperactivated in human castration-resistant prostate cancer (CRPC). However, the determinants of AR overexpression in CRPC are poorly defined. Here we show that retinoic acid receptorârelated orphan receptor γ (ROR-γ) is overexpressed and amplified in metastatic CRPC tumors, and that ROR-γ drives AR expression in the tumors. ROR-γ recruits nuclear receptor coactivator 1 and 3 (NCOA1 and NCOA3, also known as SRC-1 and SRC-3) to an ARâROR response element (RORE) to stimulate AR gene transcription. ROR-γ antagonists suppress the expression of both AR and its variant AR-V7 in prostate cancer (PCa) cell lines and tumors. ROR-γ antagonists also markedly diminish genome-wide AR binding, H3K27ac abundance and expression of the AR target gene network. Finally, ROR-γ antagonists suppressed tumor growth in multiple AR-expressing, but not AR-negative, xenograft PCa models, and they effectively sensitized CRPC tumors to enzalutamide, without overt toxicity in mice. Taken together, these results establish ROR-γ as a key player in CRPC by acting upstream of AR and as a potential therapeutic target for advanced PCa. A total of 6 samples were analyzed in this study. The study included one cell line C4-2B. C4-2B cells were cultured in medium containing vehicle control and/or SR2211 and/or XY011 and/or Enzalutamide (ENZ). The untreated C4-2B cells served as controls for the study.
Project description:Xanthomonas axonopodis pv. manihotis (Xam) is a gram negative bacterium causing Cassava Bacterial Blight (CBB), an important limitation for cassava production. The genetic bases underlying cassava resistance and susceptibility to different Xam strains are currently unknown. To identify genes and pathways important for the interaction, we used RNA-seq data to study transcriptomic changes in cassava plants inoculated with the non-pathogenic Xam strain, (ORST4) and a pathogenic strain, ORST4 transformed with the TAL effector TALE1Xam (ORST4+TALE1Xam). This analysis revealed that transcriptomic responses to both strains were very similar and were dominated by the induction of genes related to photosynthesis and phenylpropanoid biosynthesis and the down-regulation of genes related to jasmonic acid signaling, features possibly related to defense responses. Among the genes induced exclusively in cassava plants inoculated with ORST4 + TALE1Xam we found one gene containing a predicted binding site for TALE1Xam in its promoter region. This gene encodes for a Heat Shock Transcription Factor B3 (HsfB3) and likely acts a transcriptional repressor. HsfB3 may constitute a new type of susceptibility gene activated by a TAL effector that manages to be sufficient for symptom development without suppressing defense responses in the plant. mRNA of Cassava stems inoculated with a non-pathogenic (ORST4) and pathogenic (+TALE1Xam) strain of Xanthomonas axonopodis pv. Manihotis, tissues collected at 0, 5 and7 days post-inoculation, 2 technical replicates used
Project description:The extremely low efficiency of human embryonic stem cell (hESC) derivation using somatic cell nuclear transfer (SCNT) limits potential application. Blastocyst formation from human SCNT embryos occurs at a low rate and with only some oocyte donors. We previously showed in mice that reduction of histone H3 lysine 9 trimethylation (H3K9me3) through ectopic expression of the H3K9me3 demethylase Kdm4d greatly improves SCNT embryo development. Here we show that overexpression of a related H3K9me3 demethylase KDM4A improves human SCNT, and that, as in mice, H3K9me3 in the human somatic cell genome is an SCNT reprogramming barrier. Overexpression of KDM4A significantly improves the blastocyst formation rate in human SCNT embryos by facilitating transcriptional reprogramming, allowing derivation of NTESCs from all oocyte donors tested using adult AMD patient somatic nuclei donors. This conserved mechanistic insight has potential applications for improving SCNT in a variety of contexts, including regenerative medicine. Here we perform RNA-seq based transcriptome profiling in human Donor (fibroblast cells), in vitro fertilized embryos at 8-cell stages (IVF_8Cell), somatic cell nuclear transfer embryos at 8-cell stages (SCNT_8Cell), SCNT assisted by KDM4A 8-cell embryos (SCNT_KDM4A_8Cell). Besides, we also perform RNA-seq in Control human ES cells (CTR_hES) and SCNT assisted by KDM4A derived human ES cells (NTK) with duplicates.Â
Project description:Pharmacological inhibition of chromatin co-regulatory factors represents a clinically validated strategy to modulate oncogenic signaling through selective attenuation of gene expression. Here, we demonstrate that CBP/EP300 bromodomain inhibition preferentially abrogates the viability of multiple myeloma cell lines. Phenotypic effects are preceded by the direct transcriptional suppression of the lymphocyte-specific transcription factor IRF4 and the subsequent down-regulation of the IRF4 transcriptional program. Ectopic expression of IRF4 antagonizes the phenotypic effects of CBP/EP300 bromodomain inhibition and prevents the suppression of the IRF4 target c-MYC. These findings suggest that CBP/EP300 bromodomain inhibition represents a viable therapeutic strategy for targeting multiple myeloma and other lymphoid malignancies dependent on the IRF4 network. Through the use of CBP/EP300 bromodomain inhibitors (CBP/EP300i), we demonstrate that MYC expression in BETi-resistant cells is dependent on CBP/EP300 bromodomains and that treatment with CBP/EP300i restores phenotypic sensitivity.
Project description:Full pluripotency of induced pluripotent stem (iPS) cells has been determined as viable all-iPS mice can be generated through tetraploid complementation. Subsequently, activation of imprinted Dlk-Dio3 gene cluster has been suggested to correlate with the pluripotency of iPS cells1. However, evidence from recent studies has demonstrated that loss of imprinting at the Dlk-Dio3 locus did not correlate strictly with the reduced pluripotency of iPS cells. Therefore, it becomes indispensable to exploit other reliable molecular markers for evaluating the quality of iPS cells accurately. In the present study, we successfully utilize the sequential reprogramming approach and produce all-iPS mice to six generations using iPS cell lines derived from different cell lineages which contain the same proviral integration in the genome. By comparing the global gene expression and epigenetic modifications of both "tetra-on" and corresponding "tetra-off" iPS cell lines established from either mesenchymal or hematopoietic lineages through deep sequencing analysis of mRNA expression, small RNA profiling, histone modifications (H3K4m2, H3K4me3 and H3K27me3) and DNA methylation, very few differences are detected among all the iPS cell lines investigated. However, we find that two imprinted genes, disruption of which correlate with the reduced pluripotency of iPS cells. Therefore, our data not only provide the first demonstration that producing of all-iPS mice to six generations is feasible, but reveal that two imprinted regions can be served as pluripotency markers of iPS cells. Examination of the mRNA expression in 13 cell types