Project description:The B-cell receptor (BCR) plays an important role in pathogenesis and progression of chronic lymphocytic leukemia (CLL). We investigated the BCR triggering-dependent mRNA modulation by stimulating CLL cells with immobilized anti-IgM. miRome of immobilized anti-IgM stimulated CLL cells (n=16) identified a substantial upregulation of miR-132 in both unmutated (UM) and mutated (M) IGHV subgroups. A parallel gene expression profile and an in-silico analysis to identify miR-132 target genes¸ allowed us to focus on SIRT1, that encodes for a histone deacetylase targeting several proteins including TP53. We defined a reduction of SIRT1 protein levels upon immobilized anti-IgM stimulation (P=0.001), and a concomitant increase in TP53 acetylation (P=0.0072). The TP53 target gene CDKN1A was consistently up-regulated in immobilized anti-IgM stimulated CLL cells. Of note, the miR-132 constitutive expression levels in CLL cases (n=134) were of similar magnitude of those obtained in in vitro immobilized anti-IgM stimulated CLL cells. Additionally, high miR-132 expression levels retained a favorable prognostic impact in M (P=0.005), but not in UM CLL patients (P=0.968). The described miR-132/SIRT1/TP53 axis, sequentially characterized by BCR triggering, miR-132 up-regulation, SIRT1 down-regulation and TP53 acetylation, should be considered in the light of emerging drugs targeting the BCR pathway in CLL. Investigated the BCR triggering-dependent gene expression modulation by stimulating CLL cells with immobilized anti-IgM.
Project description:The B-cell receptor (BCR) plays an important role in pathogenesis and progression of chronic lymphocytic leukemia (CLL). We investigated the BCR triggering-dependent microRNA modulation by stimulating CLL cells with immobilized anti-IgM. miRome of immobilized anti-IgM stimulated CLL cells (n=16) identified a substantial upregulation of miR-132 in both unmutated (UM) and mutated (M) IGHV subgroups. A parallel gene expression profile and an in-silico analysis to identify miR-132 target genes¸ allowed us to focus on SIRT1, that encodes for a histone deacetylase targeting several proteins including TP53. We defined a reduction of SIRT1 protein levels upon immobilized anti-IgM stimulation (P=0.001), and a concomitant increase in TP53 acetylation (P=0.0072). The TP53 target gene CDKN1A was consistently up-regulated in immobilized anti-IgM stimulated CLL cells. Of note, the miR-132 constitutive expression levels in CLL cases (n=134) were of similar magnitude of those obtained in in vitro immobilized anti-IgM stimulated CLL cells. Additionally, high miR-132 expression levels retained a favorable prognostic impact in M (P=0.005), but not in UM CLL patients (P=0.968). The described miR-132/SIRT1/TP53 axis, sequentially characterized by BCR triggering, miR-132 up-regulation, SIRT1 down-regulation and TP53 acetylation, should be considered in the light of emerging drugs targeting the BCR pathway in CLL. investigated the BCR triggering-dependent gene expression modulation by stimulating CLL cells with immobilized anti-IgM.
Project description:The goal of this project was to compare the effects of differential stimulation of primary patient B-cells with CD40L, CpG, anti-IgM, and IL4 individually and in combination. Additionally, we observed a phenomenon where anti-IgM+CpG treatment resulted in a lymphoma-like phenotype and sought to compare this treatment regimen to the lymphoma cell line HBL-1.
Project description:The aim is to identify the differential miRNA expression profile of B-CLL stimulated with different type of stimulation CPG One color design, 36 samples, Two-condition experiment, CPG-stimulated B-CLL unmutated and mutated vs. Unstimulated B-CLL unmutated and mutated. Biological replicates: 18 unstimulated replicates, 18 CPG-stimulated replicates.
Project description:This study addresses this gap by conducting a direct comparison of eight platforms, representing both affinity-based and diverse mass spectrometry approaches, and covering over 13,000 proteins. By applying these platforms to the same cohort, we systematically assess their performance, identifying key differences and complementary strengths. Our findings offer valuable insights for researchers, highlighting trade-offs in coverage and their implications for biomarker discovery and clinical applications. This study serves as an essential resource, offering both technical evaluation and biological insights to support the development of novel diagnostics and therapeutics through plasma proteomics.
Project description:This study addresses this gap by conducting a direct comparison of eight platforms, representing both affinity-based and diverse mass spectrometry approaches, and covering over 13,000 proteins. By applying these platforms to the same cohort, we systematically assess their performance, identifying key differences and complementary strengths. Our findings offer valuable insights for researchers, highlighting trade-offs in coverage and their implications for biomarker discovery and clinical applications. This study serves as an essential resource, offering both technical evaluation and biological insights to support the development of novel diagnostics and therapeutics through plasma proteomics.