Gene expression changes in CD4+ thymocytes upon removal of Cullin3
Ontology highlight
ABSTRACT: We report gene expression changes in Cul3 deficient thymic CD4+ T cells We used microarrays to detail the global programme of gene expression changes upon removal of Cul3 during thymic development CD25-, CD1dPBS57-, gdTCR - CD4+ Single positive cells from thymocytes of CD4Cre-Cul3fl/fl (LM) and CD4 Cre+Cul3fl/fl (KO) were sort purified and total RNA was extracted using Trizol and analysed by microarray.
Project description:Gene expression measurements in Thp, Th1 and Th2 cells polarised from naIve CD4+ T-cells isolated from wildtype and T-bet fl/fl x Cd4-Cre BALB/c mice or from WT and Gata-3 fl/fl x Tnfrsf4-Cre C57BL/6 mice.
Project description:Suppressor of cytokine signaling 3 (SOCS3) down-regulates several signaling pathways in multiple cell types, and previous data suggest that SOCS3 may shut off cytokine activation at the early stages of liver regeneration. We developed hepatocyte-specific Socs3 knockout (Socs3 h-KO) mice to directly study the role of SOCS3 during liver regeneration after 2/3 partial hepatectomy (PH). Socs3 h-KO mice demonstrate marked enhancement of DNA replication and liver weight restoration after 2/3 PH in comparison with littermate controls. Without SOCS3, signal transducer and activator of transcription 3 (STAT3) phosphorylation is prolonged, and activation of the mitogenic kinases extracellular signal-regulated kinase 1/2 (ERK1/2) is enhanced after PH. In vitro, we show that SOCS3 deficiency enhances hepatocyte proliferation in association with enhanced STAT3 and ERK activation after epidermal growth factor (EGF) or interleukin 6 (IL-6) stimulation. Microarray analyses show that SOCS3 modulates a distinct set of genes after PH, which fall into diverse physiologic categories. Using a model of chemical-induced carcinogenesis, we found that Socs3 h-KO mice develop hepatocellular carcinoma (HCC) at an accelerated rate. By acting on cytokines and multiple proliferative pathways, SOCS3 modulates both physiologic and neoplastic proliferative processes in the liver, and may act as a tumor suppressor. Experiment Overall Design: Hepatocyte-specific excision of the Socs3 gene was achieved by breeding Socs3 fl/fl mice with mice expressing the Cre recombinase transgene under control of the albumin promoter (Alb-Cre+), yielding Socs3 h-KO mice. Socs3 fl/fl, Alb-Cre- littermates were used as controls for all experiments, and are henceforth referred to as littermates. All mice (C57BL/6) were free of Helicobacter species, housed in a specific pathogen free facility with 12-h light/dark cycles with free access to standard food and water. 2/3 PH and sham operations were performed as previously described (15, 50) (n=3-6 mice per genotype per time point). Liver remnants were weighed after removal of necrotic stumps and sutures, and compared to post-operative body weight. For HCC experiments, a single i.p. injection of DEN (5mg/kg, Sigma) was performed 12-14 d after birth. For short time points, a single injection of DEN (100mg/kg) (31) was given to 4 wk old mice. At indicated time points, mice were sacrificed by CO2 inhalation. All animal studies were carried out under approved IACUC protocols at the University of Washington.
Project description:BACKGROUND: Peroxisome proliferator-activated receptor g (PPAR g) is a nuclear receptor whose activation has been shown to modulate macrophage and epithelial cell-mediated inflammation. The objective of this study was to use a systems approach for investigating the mechanism by which the deletion of PPAR g in T cells modulates the severity of dextran-sodium sulfate (DSS)-induced colitis, immune cell distribution and global gene expression. METHODS: Wild-type (WT) or PPAR g flfl; CD4 Cre+ (CD4cre) mice in a C57BL/6 background were challenged with 2.5% DSS in their drinking water for 0, 2, or 7 days. Mice were scored on disease severity both clinically and histopathologically. Flow cytometry was used to assess lymphocyte and macrophage populations in the blood, spleen, and mesenteric lymph nodes (MLN). Global gene expression in colonic mucosa was profiled using Affymetrix microarrays. RESULTS: Both disease severity and inflammation-related body weight loss were accelerated by the deficiency of PPAR g in T cells. Examination of colon histopathology revealed significantly greater epithelial erosion, leukocyte infiltration, and mucosal thickening in the CD4cre mice on day 7. CD4cre mice had more CD8+ T cells than wt mice and fewer CD4+FoxP3+ regulatory T cells (Treg) and IL10+CD4+ T cells in blood and MLN, respectively. Transcriptomic profiling revealed around 3000 genes being transcriptionally altered as a result of DSS challenge in CD4cre mice. These included up-regulated adhesion molecules on day 7 and proinflammatory cytokines interleukin-6 (IL-6) and IL-1b, and suppressor of cytokine signaling 3 (SOCS-3) mRNA expression. CONCLUSIONS: These findings suggest that T cell PPAR g down-regulates inflammation during DSS colitis by inhibiting colonic expression of inflammatory mediators and increasing MLN Treg. Colonic mucosa from wt and CD4cre mice were sampled at 0 (no DSS), 2, and 7 days of DSS-induced experimental colitis
Project description:Cancer cells must evade immune responses at distant sites to establish metastases. The lung is a frequent site for metastasis. We hypothesized that lung-specific immunoregulatory mechanisms create an immunologically permissive environment for tumor colonization. We found that T cell-intrinsic expression of the oxygen-sensing prolyl-hydroxylase (PHD) proteins is required to maintain local tolerance against innocuous antigens in the lung, but powerfully licenses colonization by circulating tumor cells. PHD proteins limit pulmonary type helper (Th)-1 responses, promote CD4+-regulatory T (Treg) cell induction, and restrain CD8+ T cell effector function. Tumor colonization is accompanied by PHD protein-dependent induction of pulmonary Treg cells and suppression of IFN-g-dependent tumor clearance. T cell-intrinsic deletion or pharmacological inhibition of PHD proteins limits tumor colonization of the lung and improves the efficacy of adoptive cell transfer immunotherapy. Collectively, PHD proteins function in T cells to coordinate distinct immunoregulatory programs within the lung that are permissive to cancer metastasis. RNA expression was measured by RNA-Seq at day 4 following stimulation of naïve FACS-sorted CD4+ T cells with anti-CD3 and anti-CD28 antibodies in the presence of indicated doses of TGF-b. Gene expression was analysed separately in control Cd4Cre (WT) and Egln1fl/fl Egln2fl/fl Egln3fl/fl Cd4Cre (tKO) cells, or in cells treated with the pharmacological PHD inhibitor dimethyloxaloylglycine (DMOG) and control vehicle-treated cells.
Project description:To investigate the function of Embigin on LTA1 induced-CD4+TRM cells, we immunized CD4cre x Embfl/fl mice with OmpX and LTA1 at Day0 and Day21, and isolated CD4+ cells from Embfl/fl CD4cre-(WT) and Embfl/fl CD4cre+(KO) mice from the lung by magnetic beads. We then performed gene expression profiling analysis using data obtained from RNA-seq of CD4+cells from 5 WT and 5 KO mice.
Project description:A microarray study performed in iTreg of miR-31fl/fl/CD4Cre and control mice to identify genes that are regulated by the miR-31. CD4+ naM-CM-/ve T cells from miR-31fl/fl mice and miR-31fl/flCD4Cre mice were used to induce iTreg in vitro. Four independent experiments were performed. MiR-31fl/fl/CD4Cre mice (6 wk old) and age-matched control mice were sacrificed, and the spleen were removed and teased into cell-single suspensions and filtered through a 40 M-NM-<m cell strainer. NaM-CM-/ve CD4+CD25-Foxp3gfp-CD62Lhi T cells were sorted by FACSAria III (BD bioscience).The medium used for T cell cultures was RPMI-1640 (Gibco) supplemented with 10% heat-inactivated FBS (Gibco), 2 mM L-glutamine (Gibco), 100 U/ml penicillin, 100 M-NM-<g/ml streptomycin, and 5 mM M-NM-2-mercaptoethanol (Gibco). The CD4+ NaM-CM-/ve T cells were stimulated with plate-bound anti-CD3 (5 M-NM-<g/ml) plus soluble anti-CD28 (2 M-NM-<g/ml) under iTreg cell differentiation conditions (mTGF-M-NM-21, 5 ng/ml and rmIL-2, 40 ng/ml; R&D Systems). After 4 days, harvested cell ,the RNA was extracted in Trizol and then purified using the miRNeasy Micro Kit (Qiagen). This submission shows the data obtained from 3 individual miR-31fl/fl/CD4Cre mice mice measured against 3 control mice.
Project description:It has been recently shown that N-ras plays a preferential role in immune cell development and function; specifically: N-ras, but not H-ras or K-ras, could be activated at and signal from the Golgi membrane of immune cells following a low level TCR stimulus. The goal of our studies was to test the hypothesis that N-ras and H-ras played distinct roles in immune cells at the level of the transcriptome. First, we showed via mRNA expression profiling that there were over four hundred genes that were uniquely differentially regulated either by N-ras or H-ras, which provided strong evidence in favor of the hypothesis that N-ras and H-ras have distinct functions in immune cells. We next characterized the genes that were differentially regulated by N-ras in T cells following a low-level TCR stimulus. Of the large pool of candidate genes that were differentially regulated by N-ras downstream of TCR ligation, four genes were verified in qRT-PCR-based validation experiments as being differentially regulated by N-ras (Dntt, Slc9a6, Chst1, and Lars2). Finally, although there was little overlap between individual genes that were regulated by N-ras in unstimulated thymocytes and stimulated CD4+ T-cells, there was a nearly complete correspondence between the signaling pathways that were regulated by N-ras in these two immune cell types. Since we were interested primarily in genes that were differentially regulated by N-ras following a low-level TCR stimulus, our microarray data comparison was between data from TCR-stimulated, WT CD4+ T-cells and from TCR-stimulated, N-ras KO CD4+ T-cells. Genes that were differentially regulated in the comparison between stimulated N-ras KO CD4+ T-cells and unstimulated N-ras KO CD4+ T-cells, as well as those genes that were differentially regulated in the comparison between stimulated WT CD4+ T-cells and unstimulated WT CD4+ T-cells were excluded from this analysis. To determine if N-ras and H-ras regulate different sets of genes in thymocytes, a comparison was made between the set of genes that were differentially regulated by N-ras in the [WT] vs. [N-ras KO] comparison and the set of genes that were differentially regulated by H-ras in the [WT] vs. [H-ras KO] comparison. RNA was extracted from CD4+ T cell splenocytes isolated from 6-20 week old N-Ras KO and WT mice following growth in T cell growth media either with or without 1 microgram/milliliter ant-CD3 and anti-CD28 antibodies. RNA was extracted from thymocytes isolated directly from 6-20 week old N-Ras KO, H-Ras KO and WT mice.
Project description:Following implantation, mouse epiblast cells transit from a naïve to a primed state in which they are competent for both somatic and primordial germ cell (PGC) specification. Using mouse embryonic stem cells (mESC) as an in vitro model to study the transcriptional regulatory principles orchestrating peri-implantation development, here we show that the transcription factor Foxd3 is necessary for the exit from naïve pluripotency and the progression to a primed pluripotent state. During this transition, Foxd3 acts as a repressor that dismantles a significant fraction of the naïve pluripotency expression program through the decommissioning of active enhancers associated with key naïve pluripotency and early germline genes. Subsequently, Foxd3 needs to be silenced in primed pluripotent cells to allow the reactivation of relevant genes required for proper PGC specification. Our findings uncover a wave of activation-deactivation of Foxd3 as a crucial step for the exit from naïve pluripotency and subsequent PGC specification. mRNA profiles were generated by RNA-seq in duplicates for each of the following mESC lines: Foxd3fl/fl;Cre-ER mESC maintained in "Serum+LIF" (SL) treated with TM for three days (SL Foxd3-/-); untreated Foxd3fl/fl;Cre-ER SL mESC (SL Foxd3fl/fl); tetON Foxd3 SL mESC treated with Dox for three days; WT SL mESC treated with Dox for three days; Foxd3fl/fl;Cre-ER mESC maintained in "2i+LIF" (2i) treated with TM for three days (2i Foxd3-/-); untreated Foxd3fl/fl;Cre-ER 2i mESC (2i Foxd3fl/fl).
Project description:Purpose: To compare the transcriptomes of activated CD4 T effector cell populations in the presence and absence of STAT3 at 8 days post-infection using high-throughput RNA sequencing analysis. Methods: Cell sorting of the populations was done using the markers Ly6c and PSGL-1 CD4 T cell Ly6c and PSGL-1 population mRNA profiles 8 days post-LCMV infection of wild type (WT) and STAT3fl/fl Cd4cre mice were generated by mRNA sequencing using Illumina HiSeq 2000.