ABSTRACT: Genome-wide DNA methylation profiles of TGF-beta ovarian cancer cells were obtained using next generation Illumina Infinium 450k assay which includes over 450,000 GpG sites. DNA from 12 samples were hybridized to the Illumina's Infinium HumanMethylation 450 BeadChip
Project description:Genome-wide DNA methylation profiles of SGI-110-treated ovarian cancer xenografts were obtained using next generation Illumina Infinium 450k assay which includes over 450,000 GpG sites. DNA from 6 samples were hybridized to the Illumina's Infinium HumanMethylation 450 BeadChip
Project description:Genome-wide DNA methylation profiling of HCT116 WT, HCT116 DNMT1 and DNMT3B double KO, and breast cancer tumors by next generation Infinium assay Bisulfite converted DNA from 22 samples were hybridized to the Illumina's HumanMethylation450 BeadChip
Project description:Background: Low birth weight is associated with an increased adult metabolic disease risk. It is widely discussed that poor intrauterine conditions could induce long-lasting epigenetic modifications, leading to systemic changes in regulation of metabolic genes. In a unique cohort of 17 monozygotic (MZ) monochorionic female twins very discordant for birth weight (relative differences ranging from 21.3-35.7%), we examined if adverse prenatal growth conditions experienced by the smaller co-twins lead to systemic long-lasting DNA methylation changes. Genome-wide DNA methylation profiles were acquired from saliva DNA using the Infinium HumanMethylation450 BeadChip, targeting ~2% of all CpGs in the genome. Results: Overall, co-twins showed very similar genome-wide DNA methylation profiles. Since observed differences were almost exclusively caused by variable cellular composition, an original marker-based adjustment strategy was developed to eliminate such variation at affected CpGs. Among adjusted and unchanged CpGs 3153 were differentially methylated between the heavy and light co-twins at nominal significance (p<0.01), of which 45 showed absolute mean β-value differences >0.05 (max=0.08). Deep bisulfite sequencing of eight such loci revealed that differences remained in the range of technical variation, arguing against a reproducible biological effect. Analysis of methylation in repetitive elements using methylation-dependent primer extension assays also indicated no significant intra-pair differences. Conclusions: Severe intrauterine growth differences observed within these MZ twins are not associated with long-lasting DNA methylation differences in cells composing saliva, detectable with up-to-date technologies. Additionally, our results indicate that uneven cell type composition can lead to spurious results and should be addressed in epigenomic studies. DNA methylation profiles of saliva from 17 Adult Female MZ MC Twins discordant for birth weight.
Project description:Forensic body fluid identification is important for crime scene reconstruction. We used Illumina HumanMethylation 450K bead array containing over the 450,000 CpG sites in 16 body fluid samples to find novel DNA methylation marker for forensic body fluid identification. Examination of genome-wide DNA methylation profiling in 16 body fluid samples
Project description:DNA methylation profiling of whole blood using Illumina's Infinium HumanMethylation27 Beadchip array. The dataset encompasses profiles of 12 non-diabetic control blood donors and 12 type-2 diabetic (T2D) individuals. Bisulfite converted DNA from 24 blood samples were hybridised to the Illumina Infinium HumanMethylation27 Beadchip
Project description:In this study, we have analyzed DNA methylation characteristics of human mesenchymal stem and progenitor cells (MSPCs) form different tissue sources including bone marrow (BM), white adipose tissue (WAT ), umbilical cord (UC) as well as dermal fibroblasts by using the HumanMethylation450K array. Cells able to form bone through endochondral ossification and attract bone marrow in an innovative in vivo model were compared to cells lacking these capacities. Interestingly only BM-derived MSPCs were capable of bone formation and marrow attraction. These features correlated with unique epigenetic characteristics potentially enabling BM-derived cells to undergo endochondral ossification. 12 samples were hybridised to the Illumina Infinium 450k Human Methylation Beadchip
Project description:This study identified DNA methylation patterns that were associated with tumor subtypes, disease outcome, and distinct metabolome and gene expression patterns. This study performed a large scale DNA methylation (Illumina HumanMethylation450 BeadChip [HumanMethylation450 15017482 v.1.1], N=72), gene expression (Affymetrix Human Gene 1.0 ST Array [HuGene-1_0-st], N=108), and metabolome (Metabolon, Inc. Durham, NC) analysis of fresh-frozen human breast tumors from African-American and European-American patients from the greater Baltimore area, Maryland (US), with survival follow-up.
Project description:Human aging implies many phenotypic modifications and an increased susceptibility to many common diseases, phenomena that cannot be fully explained by the constrained genetic setting. An alternative pathway that could explain the age-associated alterations is epigenetic drifts. To address this issue, we performed Whole Genome Bisulfite Sequencing (WGBS) of a newborn and of a centenarian. The centenarian DNA exhibited a significant loss in DNA methylation and a poor correlation in the methylation status of neighboring CpGs throughout the genome. From a gene-regulatory region standpoint, we observed that the DNA hypomethylation events occurred mainly at CpG-poor promoters and in tissue-specific genes, whereas a greater level of DNA methylation was observed in CpG island promoters. Most importantly, we extended the study to a larger cohort of newborn and nonagenarian samples using a 450,000 CpG-site DNA methylation microarray. The 450K DNA methylation approach enabled validation of the WGBS data and revealed additional age-related DNA methylation events. Interestingly, we also observed the DNA methylation fingerprint characteristic of a healthy aged cell in samples from patients with premature-aging disorders such as Hutchinson-Gilford progeria and Werner syndrome. Overall, we suggest that defects in the physiological DNA methylation profile contribute to the process of human aging. As the disease associated cells were immortalized B cells, the effect of EBV immortalization was determined in advance to the study using immortalized and naive B cells. DNA was quantified by Quant-iT PicoGreen dsDNA Reagent (Invitrogen) and the integrity was analyzed in a 1.3% agarose gel. Bisulfite conversion of 600 ng of each sample was perform according to the manufacturer's recommendation for Illumina Infinium Assay. Effective bisulphite conversion was checked for three controls that were converted simultaneously with the samples. 4 ul of bisulfite converted DNA were used to hybridize on Infinium HumanMethylation 450 BeadChip, following Illumina Infinium HD Methylation protocol. Chip analysis was performed using Illumina HiScan SQ fluorescent scanner. The intensities of the images are extracted using GenomeStudio (2010.3) Methylation module (1.8.5) software. Methylation score of each CpG is represented as beta value.
Project description:Matrix elasticity influences differentiation of mesenchymal stem cells (MSCs) but it is unclear if these effects are only transient - while the cells reside on the substrate - or if they reflect persistent lineage commitment. In this study, MSCs were continuously culture-expanded in parallel either on polydimethylsiloxane (PDMS) gels of different elasticity or on tissue culture plastic (TCP) to compare impact on replicative senescence, in vitro differentiation, gene expression, and DNA methylation (DNAm) profiles. The maximal number of cumulative population doublings was not affected by matrix elasticity. Differentiation towards adipogenic and osteogenic lineage was increased on soft and rigid biomaterials, respectively - but this propensity was no more evident if cells were transferred to TCP. Global gene expression profiles and DNAm profiles revealed relatively few differences in MSCs cultured on soft or rigid matrices. Furthermore, only moderate DNAm changes were observed upon culture on very soft hydrogels of human platelet lysate (hPL-gel). Our results support the notion that matrix elasticity influences cellular differentiation while the cells are organized on the substrate, but it does not have major impact on cell-intrinsic lineage determination, replicative senescence or DNAm patterns. 20 samples were hybridized to the Illumina Infinium 450k Human Methylation Beadchip
Project description:Treatment of tumors with ionizing radiation for cancer therapy induces biological responses that include changes in cell cycle, activation of DNA repair mechanisms, and induction of apoptosis or senescence programs. What is not known is whether ionizing radiation induces an epigenetic DNA methylation response or whether epigenetic changes occur in genes in pathways classically associated with the radiation response. We exposed breast cancer cells to 0, 2, or 6 Gy and determined global DNA methylation at 1, 2, 4, 8, 24, 48, and 72 hours post-irradiation. We found that radiation treatment resulted in a DNA methylation response and that cell cycle, DNA repair, and apoptosis pathways were enriched in genes are were differentially-methylated. DNA methylation profiling of ionizing radiation treated cells using the Infinium HumanMethylation450 BeadChip.