Expression data from DOX(doxorubicin) -treated wild type or CHIP knockout C57BL/6J mice at day 5
Ontology highlight
ABSTRACT: The clinical application of doxorubicin as a broad-spectrum anti-tumor antibiotic is limited greatly by its cardiotoxicity. Various mechanisms have been studied, but little is known about whether genes or pathways relevant with energy metabolism contributes to doxorubicin-induced cardiomyopathy or not. We used microarrays to detail the global expression profiling of acute cardiomyopathy induced by doxorubicin in wild type or CHIP knockout C57BL/6J mice and discovered distinct classes of changed genes during this process. The whole hearts were selected for RNA extraction and hybridization on Affymetrix microarrays at day 5 after a single intraperitoneal injection of doxorubicin at a dose of 15 mg/kg.
Project description:The clinical application of doxorubicin as a broad-spectrum anti-tumor antibiotic is limited greatly by its cardiotoxicity. Various mechanisms have been studied, but little is known about whether genes or pathways relevant with energy metabolism contributes to doxorubicin-induced cardiomyopathy or not. We used microarrays to detail the global expression profiling of acute cardiomyopathy induced by doxorubicin in wild type or CHIP knockout C57BL/6J mice and discovered distinct classes of changed genes during this process.
Project description:Doxorubicin (Dox) is an effective chemotherapeutic agent against a broad range of tumors. However, a threshold dose of doxorubicin causes an unacceptably high incidence of heart failure and limits its clinical utility. We have established two models of doxorubicin cardiotoxicity in mice: 1) in an acute model, mice are treated with 15mg/kg of doxorubicin once; 2) in a chronic model, they receive 3mg/kg weekly for the first 12 of a total of 18 weeks. Using echocardiography, we have monitored left ventricular function of the mouse hearts during treatment in chronic model and seen the expected development of dilated cardiomyopathy (DCM). Treated mice showed histological abnormalities similar to those seen in patients with doxorubicin cardiomyopathy. To investigate transcriptional regulation in these models, we used a microarray we generated with over 5000 independent cDNA clones from murine heart and skeletal muscle. We have identified genes that respond to doxorubicin exposure in both model systems, and confirmed these results using real-time PCR. In the acute model, a set of genes is regulated early and rapidly returns to baseline levels, consistent with the half-life of doxorubicin. In the chronic model, which mimics the clinical situation much more closely, we identified dysregulated genes that implicate specific mechanisms of cardiac toxicity and may serve as biomarkers of doxorubicin induced dilated cardiomyopathy. Keywords: time course
Project description:Staphylococcus aureus pneumonia causes significant morbidity and mortality. Alpha-hemolysin (Hla), a pore-forming cytotoxin of S. aureus, has been identified through animal models of pneumonia as a critical virulence factor that induces lung injury. In spite of considerable molecular knowledge of how this cytotoxin injures the host, the precise host response to Hla in the context of infection remains poorly understood. We employed whole-genome expression profiling of infected lung to define the host response to wild-type S. aureus compared with an Hla-deficient isogenic mutant in experimental pneumonia. These data provide a complete expression profile at four and at twenty-four hours post-infection, revealing a unique response to the toxin-expressing strain. Gene ontogeny analysis revealed significant differences in the extracellular matrix and cardiomyopathy pathways, both of which govern cellular interactions in the tissue microenvironment. Evaluation of individual transcript responses to Hla-secreting bacteria was notable for upregulation of host cytokine and chemokine genes, including the p19 subunit of interleukin-23. Consistent with this observation, the cellular immune response to infection was characterized by a prominent TH17 response to wild-type staphylococci. These findings define specific host mRNA responses to Hla-producing S. aureus, coupling the pulmonary TH17 response to the presence of this cytotoxin. Expression profiling to define the host response to a single virulence factor proved to be a valuable tool in identifying pathways for further investigation in S. aureus pneumonia. This approach may be broadly applicable to the study of bacterial toxins, defining host pathways that can be targeted to mitigate toxin-induced disease. Animals were treated with PBS, S. aureus wild-type, or S. aureus Hla-deficient isogenic mutant.
Project description:Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological light–dark conditions using stable isotope labeling by amino acids quantitative MS. To measure the daily accumulation of proteins, we designed an SILAC MS experiment, in which total protein extracts were harvested from C57BL/6J mice every 3 h for 2 d (eight samples per day). Relative protein abundance in each of 16 samples was quantified against a common reference sample labeled using the SILAC method. The generated mass spectra allowed the identification of a total of 5,827 distinct proteins, of which 70% yielded relative measurements in at least 8 of 16 samples. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors
Project description:Doxorubicin is an effective chemotherapy drug for treating various types of cancer. However, lethal cardiotoxicity severely limits its clinical use. Recent evidence has indicated that aberrant activation of the cytosolic DNA-sensing cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a critical role in cardiovascular destruction. Here, we investigate the involvement of this mechanism in doxorubicin-induced cardiotoxicity (DIC).
Project description:Doxorubicin is an effective chemotherapy drug for treating various types of cancer. However, lethal cardiotoxicity severely limits its clinical use. Recent evidence has indicated that aberrant activation of the cytosolic DNA-sensing cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a critical role in cardiovascular destruction. Here, we investigate the involvement of this mechanism in doxorubicin-induced cardiotoxicity (DIC).
Project description:Improvements in the diagnosis and treatment of cancer has revealed the long-term side effects of chemotherapeutics, particularly cardiotoxicity. Current clinical measures to track cardiotoxicity are insufficient to diagnose damage before it has been done, necessitating new, early biomarkers of cardiotoxicity. Here, we collected paired transcriptomics and metabolomics data characterizing in vitro cardiotoxicity to three compounds: 5-fluorouracil, acetaminophen, and doxorubicin. Standard gene enrichment and metabolomics approaches identify some commonly affected pathways and metabolites but are not able to readily identify mechanisms of cardiotoxicity. Here, we integrate this paired data with a genome-scale metabolic network reconstruction (GENRE) of the heart to identify shifted metabolic functions, unique metabolic reactions, and changes in flux in metabolic reactions in response to these compounds. Using this approach, we are able to confirm known mechanisms of doxorubicin-induced cardiotoxicity and provide hypotheses for mechanisms of cardiotoxicity for 5-fluorouracil and acetaminophen.
Project description:The anthracycline doxorubicin is a highly effective anti-cancer drug associated with severe side effects, including secondary tumors and cardiotoxicity. Doxorubicin induces DNA damage through double-strand breaks (DSBs) and epigenetic or chromatin damage through histone eviction. We examined whether separation of these activities can help to detoxify doxorubicin, while maintaining its chemotherapeutic efficacy. We show that anthracycline variants harboring the histone eviction activity alone remain potent anti-cancer drugs, while greatly alleviating cardiotoxicity and secondary tumor formation. We thus demonstrate that treatment-limited side effects of doxorubicin can be synthesized away, yielding effective chemotherapeutics towards improved and prolonged treatment responses and higher patient quality of life.
Project description:Cardiomyocytes derived from human pluripotent stem cells were exposed to the cardiotoxic drug Doxorubicin in order to assess the utility of this cell system as a model for drug-induced cardiotoxicity. Cells are exposed to different concentrations of doxorubicin for up to 48 hours followed by a 12 days recovery period.