Expression data from CpG treated Common Lymphoid Progenitors
Ontology highlight
ABSTRACT: Common Lymphoid Progenitors (CLPs) have two subsets, Ly-6d- which are mutli-potent, and Ly-6d, which derive from Ly-6d- and are committeed to the B-cell fate. Treatment of a mouse with CpG DNA causes an inflammatory response that alters both subsets. We used expression data to understand the changes in transcription in the transition of Ly-6d- CLPs to Ly-6d+ CLPs ion the presence and absence of CpG induced inflammation. C57BL/6 mice were treated over 10 days with either PBS or 50 ug of CpG1826. On day 10, bone marrow was harvested and CLPs populations were sorted by flow cytometry directly into RNAeasy buffer (Qiagen).
Project description:Common Lymphoid Progenitors (CLPs) have two subsets, Ly-6d- which are mutli-potent, and Ly-6d, which derive from Ly-6d- and are committeed to the B-cell fate. Treatment of a mouse with CpG DNA causes an inflammatory response that alters both subsets. We used expression data to understand the changes in transcription in the transition of Ly-6d- CLPs to Ly-6d+ CLPs ion the presence and absence of CpG induced inflammation.
Project description:Monocytes and their lineage descendants serve as a central defense system against infection and injury but if uncontrolled can also promote an excessive pathological inflammatory response. Therefore a current research goal is to understand how the organism controls the number and function of monocytes and how these variables can be tailored in therapy. Considering the evidence that monocytes are heterogeneous and exist in at least two subsets committed to divergent functions, we investigated whether distinct factors regulate the balance between monocyte subset responses in vivo. Here we investigate the differential expression of mRNA among murine steady-state monocyte subsets. Blood was drawn from healthy C57BL/6 donors. For each biological replicate 1000 monocytes of the Ly-6Chi and Ly-6Clo phenotype were isolated from the blood sample through fluorescence activated cell sorting.
Project description:A current paradigm states that monocytes circulate freely and patrol blood vessels, but differentiate irreversibly into dendritic cells or macrophages upon tissue entry. Here we show that bona fide undifferentiated monocytes reside in the spleen and outnumber their equivalents in circulation. The reservoir monocytes are relatively immotile, assemble in clusters in the cords of the subcapsular red pulp, and are distinct from macrophages and dendritic cells. In response to ischemic myocardial injury, splenic monocytes increase their motility, exit the spleen en masse, accumulate in injured tissue and participate in wound healing. These observations uncover a role for the spleen as a site for storage and rapid deployment of monocytes, and identify the splenic monocyte reservoir as a resource that the body exploits to regulate inflammation. The goal of this gene expression study was to compare the gene expression of Ly-6C hi inflammatory monocytes residing in the spleen and their circulating counterparts in the blood. Monocyte subsets of a group of four mice (C57BL/6, 8-12 weeks) were isolated by fluorescence activated cell sorting (FACS Aria, BD biosciences) as CD11bhi (CD90/B220/CD49b/NK1.1/Ly-6G)lo (F4/80/I-Ab/CD11c)lo Ly-6Chi (all antibodies BD biosciences) cells. Samples of 1,000 Ly-6Chi blood and Ly-6Chi splenic monocytes of each mouse were collected directly into 20 M-BM-5l lysis buffer of the PicoPure RNA isolation kit (Arcturus). RNA extraction was subsequently performed according to the manufacturerM-bM-^@M-^Ys instructions (Arcturus). RNA quality was assessed using RNA pico lab chips on the Agilent Bioanalyzer. For all samples a RIN above 8 could be achieved. All further steps were performed at the UCSF Shared Microarray Core Facilities according to standard protocols (http://www.arrays.ucsf.edu and http://www.agilent.com).
Project description:Elite Long-Term Nonprogressors are asymptomatic HIV-infected individuals who display long-term virtually undetectable viremia, stable CD4 T cell counts and extremeley low levels of HIV reservoir, in the absence of antiretroviral therapy. We conducted a whole-genome transcriptional profiling study of sorted resting CD4 T cell subsets (naive, central memory, transitional memory and effector memory) in 7 Elite Long-Term Nonprogressors, 7 HIV-infected viremic and 7 uninfected individuals. HIV-1 cellular DNA levels were quantified in each sorted CD4 T cell subset
Project description:Monocytes and their lineage descendants serve as a central defense system against infection and injury but if uncontrolled can also promote an excessive pathological inflammatory response. Therefore a current research goal is to understand how the organism controls the number and function of monocytes and how these variables can be tailored in therapy. Considering the evidence that monocytes are heterogeneous and exist in at least two subsets committed to divergent functions, we investigated whether distinct factors regulate the balance between monocyte subset responses in vivo. We identified a microRNA (miRNA), miR-146a, which is differentially regulated both in mouse (Ly-6Chi and Ly-6Clo) and human (CD14hi and CD14lo CD16+) monocyte subsets. The single miRNA was found to significantly control the amplitude of the Ly-6Chi monocyte response during inflammatory challenge whereas it did not affect Ly-6Clo cells. miR-146a–mediated regulation was cell-intrinsic and depended on Relb, a member of the non-canonical NF-κB/Rel family, which is identified here as a novel miR-146a target. These observations provide novel mechanistic insights into the molecular events that regulate monocyte functional heterogeneity and identify therapeutic targets that can influence the quality and quantity of monocyte responses. 4 samples of splenic Ly-6Chi monocytes, 4 samples of splenic Ly-6Clo monocytes; both isolated from C57BL/6 mice. Each sample was generated by fluorecsence activated cell sorting from the pooled spleens of 10 mice.
Project description:Developmental origins of dendritic cells (DCs) including conventional DCs (cDCs, comprising cDC1 and cDC2 subsets) and plasmacytoid DCs (pDCs) remain unclear. We studied DC development in unmanipulated adult mice using inducible lineage tracing combined with clonal DNA "barcoding" and single-cell transcriptome and phenotype analysis (CITE-Seq). Inducible tracing of Cx3cr1+ hematopoietic progenitors in the bone marrow showed that they simultaneously produce all DC subsets including pDCs, cDC1s and cDC2s. Clonal tracing of hematopoietic stem cells (HSCs) and of Cx3cr1+ progenitors revealed clone sharing between cDC1s and pDCs, but not between the two cDC subsets or between pDCs and B cells. Accordingly, CITE-Seq analyses of differentiating HSCs and Cx3cr1+ progenitors identified progressive stages of pDC development including Cx3cr1+ Ly-6D+ propDCs that were distinct from lymphoid progenitors. These results reveal the shared origin of pDCs and cDCs, and suggest a revised scheme of DC development whereby pDCs share clonal relationship with cDC1s
Project description:Human and mouse blood each contain two monocyte subsets. Here, we investigated the extent of their similarity using a microarray approach. Approximately 300 genes in human and 550 genes in mouse were differentially expressed between subsets. More than 130 of these gene expression differences were conserved between mouse and human monocyte subsets. We confirmed numerous differences at the cell surface protein level. Despite overall conservation, some molecules were conversely expressed between the two species’ subsets, including CD36, CD9, and TREM-1. Furthermore, other differences existed, including a prominent PPARγ signature in mouse monocytes absent in human. Overall, human and mouse monocyte subsets are far more broadly conserved than currently recognized. Thus, studies in mice may indeed yield relevant information regarding the biology of human monocyte subsets. However, differences between the species deserve consideration in models of human disease studied in the mouse. The two major subsets of monocytes (Ly-6C+ and Ly-6Clo) from 12-week old C57Bl/6 mice were sorted and the RNA extracted and hybridized to Affymetrix GeneChip® 430 2.0 arrays. We pooled leukocytes from 5 mice for each sort and sorted 4 separate times for 4 biological replicates. The two major monocyte subsets (CD16- and CD16+) were isolated from venous heparinized blood from apparently healthy human volunteers using MACS technology with all reagents and tools from Miltenyi Biotec. Three separate donors were hybridized three different times to Affymetrix U133 Plus 2.0 array.
Project description:Inflammatory cytokines promote the accumulation of activated CD8 T cells. Here, we transfer 600 OT-I CD8 T cells iv into naïve C57BL/6 hosts. One day later, 500,000 LPS-matured and OVA257 peptide-coated DC were injected iv into OT-I CD8 T cell seeded hosts with (DC+CpG) or without (DC). Other seeded mice were infected with 2x10^4 virulent Listeria monocytogenes (vLM-OVA) iv. OT-I CD8 T cells were harvested from the spleen, flow sort purified, then RNA was extracted using RNeasy (Qiagen) kit. Naive OT-I CD8 T cells (Naive) were purified from the spleens of OT-I transgenic mice. Each group had three independent biological replicates.Transcriptomes were compared using DAVID analysis (with genes scoring FDR<0.01) and GSEA analysis. 3 biological replicates per group. Groups included Naïve OT-I CD8 T cells, DC+CpG OT-I CD8 T cells, DC OT-I CD8 T cells, and vLM-OVA OT-I CD8 T cells. Most comparisons used Naïve OT-I CD8 T cells as a baseline comparison
Project description:We performed gene expression microarray comparing Ly6D- CLPs isolated from OcnCre;iDTR control and mutant mice by flow cytometry. Ly6D- CLPs were isolated from the bone marrow of OcnCre;iDTR control or mutant mice by flow cytometry and subjected to Affymetrix microarray comparison of gene expression. Markers used to define Ly6D- CLP by flow cytometry was: LineageLo, cKit+, Sca+, CD127+, Thy1.2-, Ly6D-
Project description:We developed a simplified flow cytometry strategy in order to discriminate monocytes and macrophages in the lung of C57BL/6 mice. Using this strategy, we identified autofluorescent F4/80+ CD11c+ alveolar macrophages, non-autofluorescent CD64+Ly-6C- interstitial macrophages and Ly-6Chi monocytes residing in the lung of WT mice. A fraction of these Ly-6Chi monocytes corresponded to classical blood monocytes associated with the lung vasculature, but another fraction did not depend on CCR2, the chemokine receptor required for monocytes to egress from the bone marrow, as a population of lung Ly-6Chi monocytes was also present in the lung of Ccr2-/- mice. A remaining question was whether lung monocytes represented a particular population of monocytes that could be distinguishable from the classical CCR2-dependent blood monocytes. To address this issue, we performed a transcriptomic comparison of Ly-6Chi monocytes recovered from flushed lung of WT mice (â60% of CCR2- dependent classical blood monocytes and â40% of lung monocytes) and Ccr2-/- mice (more than 95% of lung monocytes). In addition, we tested whether exposure to TLR ligands would affect interstitial macrophages, and we compared to transcriptome of IM at steady-state and IM 1 week after administration of 50 µg CpG-DNA intratracheally.