Project description:Truncating mutations of CHD8, encoding a chromodomain helicase, and of many other genes with diverse functions, are strong-effect risk factors for autism spectrum disorder (ASD), suggesting multiple mechanisms of pathogenesis. We explored the transcriptional networks that CHD8 regulates in neural progenitor cells (NPCs) by reducing its expression and then integrating transcriptome sequencing (RNA-seq) with genome-wide CHD8 binding (ChIP-seq). Suppressing CHD8 to levels comparable with loss of a single allele caused altered expression of 1,756 genes, 64.9% of which were up-regulated. CHD8 showed widespread binding to chromatin, with 7,324 replicated sites that marked 5,658 genes. Integration of these data suggests that a limited array of direct regulatory effects of CHD8 produced a much larger network of secondary expression changes. Genes indirectly down-regulated (i.e., without CHD8 binding sites) reflect pathways involved in brain development, including synapse formation, neuron differentiation, cell adhesion, and axon guidance, whereas CHD8-bound genes are strongly associated with chromatin modification and transcriptional regulation. Genes associated with ASD were strongly enriched among indirectly down-regulated loci (p = 1.01x10-9) and CHD8-bound genes (p = 4.34x10-3), which align with previously identified co-expression modules during fetal development. We also find an intriguing enrichment of cancer related gene-sets among CHD8-bound genes (p < 1.9x10-11). In vivo suppression of chd8 in zebrafish produced macrocephaly comparable to that of humans with inactivating mutations. These data indicate that heterozygous disruption of CHD8 precipitates a network of gene expression changes involved in neurodevelopmental pathways in which many ASD-associated genes may converge on shared mechanisms of pathogenesis. RNA-seq in NPCs treated with shRNAs targeting CHD8. For controls, NPCs were treated with shRNAs targeting GFP and LacZ. Infection and sequencing was carried out in two separate batches, with one GFP and one LacZ sample in each batch. All samples were sequenced in two technical replicates.
Project description:Truncating mutations of CHD8, encoding a chromodomain helicase, and of many other genes with diverse functions, are strong-effect risk factors for autism spectrum disorder (ASD), suggesting multiple mechanisms of pathogenesis. We explored the transcriptional networks that CHD8 regulates in neural progenitor cells (NPCs) by reducing its expression and then integrating transcriptome sequencing (RNA-seq) with genome-wide CHD8 binding (ChIP-seq). Suppressing CHD8 to levels comparable with loss of a single allele caused altered expression of 1,756 genes, 64.9% of which were up-regulated. CHD8 showed widespread binding to chromatin, with 7,324 replicated sites that marked 5,658 genes. Integration of these data suggests that a limited array of direct regulatory effects of CHD8 produced a much larger network of secondary expression changes. Genes indirectly down-regulated (i.e., without CHD8 binding sites) reflect pathways involved in brain development, including synapse formation, neuron differentiation, cell adhesion, and axon guidance, whereas CHD8-bound genes are strongly associated with chromatin modification and transcriptional regulation. Genes associated with ASD were strongly enriched among indirectly down-regulated loci (pM-BM- =M-BM- 1.01x10-9) and CHD8-bound genes (p = 4.34x10-3), which align with previously identified co-expression modules during fetal development. We also find an intriguing enrichment of cancer related gene-sets among CHD8-bound genes (p < 1.9x10-11). In vivo suppression of chd8 in zebrafish produced macrocephaly comparable to that of humans with inactivating mutations. These data indicate that heterozygous disruption of CHD8 precipitates a network of gene expression changes involved in neurodevelopmental pathways in which many ASD-associated genes may converge on shared mechanisms of pathogenesis. ChIP-seq for CHD8 using three different antibodies, and the related protein CHD7, in human iPSC-derived NPCs treated with shRNA targeting GFP (which were used as control cells for an shRNA knockdown RNA-seq experiment that was part of the overall study)
Project description:Truncating mutations of chromodomain helicase DNA-binding protein 8 (CHD8), and of many other genes with diverse functions, are strong-effect risk factors for autism spectrum disorder (ASD), suggesting multiple mechanisms of pathogenesis. We explored the transcriptional networks that CHD8 regulates in neural progenitor cells (NPCs) by reducing its expression and then integrating transcriptome sequencing (RNA sequencing) with genome-wide CHD8 binding (ChIP sequencing). Suppressing CHD8 to levels comparable with the loss of a single allele caused altered expression of 1,756 genes, 64.9% of which were up-regulated. CHD8 showed widespread binding to chromatin, with 7,324 replicated sites that marked 5,658 genes. Integration of these data suggests that a limited array of direct regulatory effects of CHD8 produced a much larger network of secondary expression changes. Genes indirectly down-regulated (i.e., without CHD8-binding sites) reflect pathways involved in brain development, including synapse formation, neuron differentiation, cell adhesion, and axon guidance, whereas CHD8-bound genes are strongly associated with chromatin modification and transcriptional regulation. Genes associated with ASD were strongly enriched among indirectly down-regulated loci (P < 10(-8)) and CHD8-bound genes (P = 0.0043), which align with previously identified coexpression modules during fetal development. We also find an intriguing enrichment of cancer-related gene sets among CHD8-bound genes (P < 10(-10)). In vivo suppression of chd8 in zebrafish produced macrocephaly comparable to that of humans with inactivating mutations. These data indicate that heterozygous disruption of CHD8 precipitates a network of gene-expression changes involved in neurodevelopmental pathways in which many ASD-associated genes may converge on shared mechanisms of pathogenesis.
Project description:Truncating mutations of CHD8, encoding a chromodomain helicase, and of many other genes with diverse functions, are strong-effect risk factors for autism spectrum disorder (ASD), suggesting multiple mechanisms of pathogenesis. We explored the transcriptional networks that CHD8 regulates in neural progenitor cells (NPCs) by reducing its expression and then integrating transcriptome sequencing (RNA-seq) with genome-wide CHD8 binding (ChIP-seq). Suppressing CHD8 to levels comparable with loss of a single allele caused altered expression of 1,756 genes, 64.9% of which were up-regulated. CHD8 showed widespread binding to chromatin, with 7,324 replicated sites that marked 5,658 genes. Integration of these data suggests that a limited array of direct regulatory effects of CHD8 produced a much larger network of secondary expression changes. Genes indirectly down-regulated (i.e., without CHD8 binding sites) reflect pathways involved in brain development, including synapse formation, neuron differentiation, cell adhesion, and axon guidance, whereas CHD8-bound genes are strongly associated with chromatin modification and transcriptional regulation. Genes associated with ASD were strongly enriched among indirectly down-regulated loci (p = 1.01x10-9) and CHD8-bound genes (p = 4.34x10-3), which align with previously identified co-expression modules during fetal development. We also find an intriguing enrichment of cancer related gene-sets among CHD8-bound genes (p < 1.9x10-11). In vivo suppression of chd8 in zebrafish produced macrocephaly comparable to that of humans with inactivating mutations. These data indicate that heterozygous disruption of CHD8 precipitates a network of gene expression changes involved in neurodevelopmental pathways in which many ASD-associated genes may converge on shared mechanisms of pathogenesis.
Project description:Truncating mutations of CHD8, encoding a chromodomain helicase, and of many other genes with diverse functions, are strong-effect risk factors for autism spectrum disorder (ASD), suggesting multiple mechanisms of pathogenesis. We explored the transcriptional networks that CHD8 regulates in neural progenitor cells (NPCs) by reducing its expression and then integrating transcriptome sequencing (RNA-seq) with genome-wide CHD8 binding (ChIP-seq). Suppressing CHD8 to levels comparable with loss of a single allele caused altered expression of 1,756 genes, 64.9% of which were up-regulated. CHD8 showed widespread binding to chromatin, with 7,324 replicated sites that marked 5,658 genes. Integration of these data suggests that a limited array of direct regulatory effects of CHD8 produced a much larger network of secondary expression changes. Genes indirectly down-regulated (i.e., without CHD8 binding sites) reflect pathways involved in brain development, including synapse formation, neuron differentiation, cell adhesion, and axon guidance, whereas CHD8-bound genes are strongly associated with chromatin modification and transcriptional regulation. Genes associated with ASD were strongly enriched among indirectly down-regulated loci (p = 1.01x10-9) and CHD8-bound genes (p = 4.34x10-3), which align with previously identified co-expression modules during fetal development. We also find an intriguing enrichment of cancer related gene-sets among CHD8-bound genes (p < 1.9x10-11). In vivo suppression of chd8 in zebrafish produced macrocephaly comparable to that of humans with inactivating mutations. These data indicate that heterozygous disruption of CHD8 precipitates a network of gene expression changes involved in neurodevelopmental pathways in which many ASD-associated genes may converge on shared mechanisms of pathogenesis.
Project description:Mutations in the gene encoding the chromodomain helicase DNA-binding protein 8 (CHD8) are strongly associated with autism spectrum disorder (ASD). Although duplications of the locus spanning CHD8 are also found in individuals with neurodevelopmental disorders, the role of CHD8 duplication in clinical phenotypes and the underlying mechanisms have remained unknown. Here we show that mice with Chd8 overexpression modeling human CHD8 duplication manifest growth retardation, microcephaly, and behavioral abnormalities including hyperactivity and reduced anxiety-like behavior. Chd8 overexpression results in alterations of transcription and chromatin accessibility of genes involved in neurogenesis that are associated with aberrant binding of CHD8 to enhancer regions and impairs differentiation of deep-layer neurons. Furthermore, genetic and pharmacological interventions rescue hyperactive behavior of Chd8 overexpression mice. Our results thus indicate that Chd8 overexpression mice recapitulate key features of CHD8 duplication syndrome, and they provide insight into cellular and molecular pathogenesis underlying neurodevelopmental disorders.
Project description:Mutations in the gene encoding the chromodomain helicase DNA-binding protein 8 (CHD8) are strongly associated with autism spectrum disorder (ASD). Although duplications of the locus spanning CHD8 are also found in individuals with neurodevelopmental disorders, the role of CHD8 duplication in clinical phenotypes and the underlying mechanisms have remained unknown. Here we show that mice with Chd8 overexpression modeling human CHD8 duplication manifest growth retardation, microcephaly, and behavioral abnormalities including hyperactivity and reduced anxiety-like behavior. Chd8 overexpression results in alterations of transcription and chromatin accessibility of genes involved in neurogenesis that are associated with aberrant binding of CHD8 to enhancer regions and impairs differentiation of deep-layer neurons. Furthermore, genetic and pharmacological interventions rescue hyperactive behavior of Chd8 overexpression mice. Our results thus indicate that Chd8 overexpression mice recapitulate key features of CHD8 duplication syndrome, and they provide insight into cellular and molecular pathogenesis underlying neurodevelopmental disorders.
Project description:Whole-exome sequencing studies have implicated chromatin modifiers and transcriptional regulators in autism spectrum disorder (ASD) through the identification of de novo loss of function mutations in affected individuals. Many of these genes are co-expressed in mid-fetal human cortex, suggesting ASD risk genes converge in regulatory networks that are perturbed in ASD during neurodevelopment. To elucidate such networks we mapped promoters and enhancers bound by the chromodomain helicase CHD8, which is strongly enriched in ASD-associated de novo loss of function mutations, using ChIP-seq in mid-fetal human brain, human neural stem cells (hNSCs), and embryonic mouse cortex. We find that CHD8 targets are strongly enriched for ASD risk genes that converge in ASD-associated co-expression networks in human midfetal cortex. CHD8 knockdown in hNSCs results in significant dysregulation of ASD risk genes targeted by CHD8, as well as additional genes important for neurodevelopment, including members of the Wnt/M-NM-2-catenin signaling pathway. Integration of CHD8 binding data with genetic and gene co-expression data in ASD risk models provides support for additional ASD risk genes. Together, our results suggest that loss of CHD8 function contributes to ASD through regulatory perturbation of other ASD risk genes during human cortical development. Two biological replicates for each ChIP with appropriate Input control Four biological replicates for each condition in knockdown experiments (Ctrl construct, Chd8 target C, and Chd8 target G)
Project description:Recent studies implicate chromatin modifiers in autism spectrum disorder (ASD) through the identification of recurrent de novo loss of function mutations in affected individuals. ASD risk genes are co-expressed in human midfetal cortex, suggesting that ASD risk genes converge in specific regulatory networks during neurodevelopment. To elucidate such networks, we identify genes targeted by CHD8, a chromodomain helicase strongly associated with ASD, in human midfetal brain, human neural stem cells (hNSCs) and embryonic mouse cortex. CHD8 targets are strongly enriched for other ASD risk genes in both human and mouse neurodevelopment, and converge in ASD-associated co-expression networks in human midfetal cortex. CHD8 knockdown in hNSCs results in dysregulation of ASD risk genes directly targeted by CHD8. Integration of CHD8-binding data into ASD risk models improves detection of risk genes. These results suggest loss of CHD8 contributes to ASD by perturbing an ancient gene regulatory network during human brain development.