An optimized microRNA scaffold increases shRNA processing and target knockdown
Ontology highlight
ABSTRACT: Two shRNAs were placed into expression vectors harboring mir30 microRNA scaffold and an optimized scaffold where the artificial restriction sights in mir30 have been removed. After infection and selection shRNA processing was assessed by small-RNA cloning. For both shRNAs, placement into the optimized scaffold resulted in a ~two-fold increase in processing (based on smallRNA levels). Purpose: Others have reported that the EcoRI site that was introduced to the mir30 scaffold results in decreased smallRNA processing and hence reduced target knockdown. We've developed an alternative scaffold (termed ultramir) where this site is removed. smallRNA cloning was used to determine if the movement of this sight resulted in an increase in shRNA processing. Method: Two shRNAs (one targeting Renilla Luciferase and one targeting Human RPA3) were cloned into the original mir30 cassette the ultramir cassette. Each of the 4 constructs were infected in duplicate at single copy into cells and the cells seltected unitil infection percentages reached >90% (the shRenilla hairpin was infected into HEK293T cells and the shRPA3 construts into the Gallus gallus cell line ERC. After selection smallRNA cloning was perfromed and the amount of smallRNAs corrresponding to the two shRNAs compared to the endogenous microRNA populatlon. Results: smallRNA levels of the two shRNAs doubled relative to the microRNA population when they were placed into the ultramir scaffold.
Project description:Two shRNAs were placed into expression vectors harboring mir30 microRNA scaffold and an optimized scaffold where the artificial restriction sights in mir30 have been removed. After infection and selection shRNA processing was assessed by small-RNA cloning. For both shRNAs, placement into the optimized scaffold resulted in a ~two-fold increase in processing (based on smallRNA levels).
Project description:Sub-genomewide shRNA libraries were constructed using the current RNAi consortium constructs as well as using the DSIR (siRNA algoirthm) and a novel shRNA specific algorithm (shERWOOD). All libraries were placed into mir30 expression vectors. The shERWOOD libraries were also placed in a vector harboring an optimized mir cassette (ultramir). Each library was screened using the pancreatic cell line A385. A concensus set of essential genes identified as the set for which two shRNAs depleted in each of the libries. For these genes, a great percentage of shERWOOD seletected shRNA depleted. In addition the placement of shERWOOD selected constructs into ultramir scaffoled increased the rate of shRNA depletion for essential genes further. Purpose: shRNA screens were carried out using various library construction strategies to identify the strategy that provides the best shRNA screening results. Method: Libraries were constructed using the TRC shRNA set as well as shRNAs identified using the DSIR and shERWOOD algorithms. shRNA libraries were cloned into mir30 expression vectors. shERWOOD shRNAs were also cloned into an expression vector harboring an optimized microRNA scaffold termed ultramir. Each resultant library was screened using the pancreatic cell line A385. Each library was analyzed separately to identify a set of genes where at least two shRNAs depleted. These gene sets were intersected to develop a set of essential genes. Results: The shERWOOD shRNA libraries provided the highest number depleting shRNAs for each essential gene. Further these shRNAs depleted to a greater extent than did the shRNAs from the other libraries. When shERWOOD libraries were placed into the ultramir cassette a greater number of shRNAs per essential gene depleted.
Project description:Sub-genomewide shRNA libraries were constructed using the current RNAi consortium constructs as well as using the DSIR (siRNA algoirthm) and a novel shRNA specific algorithm (shERWOOD). All libraries were placed into mir30 expression vectors. The shERWOOD libraries were also placed in a vector harboring an optimized mir cassette (ultramir). Each library was screened using the pancreatic cell line A385. A concensus set of essential genes identified as the set for which two shRNAs depleted in each of the libries. For these genes, a great percentage of shERWOOD seletected shRNA depleted. In addition the placement of shERWOOD selected constructs into ultramir scaffoled increased the rate of shRNA depletion for essential genes further.
Project description:shRNAs were assessed for off-target effects by comparing the gene expression profiles of cells that they had been infected into. shRNAs designed with the shERWOOD algorithm and house in the ultramir microRNA scafold were found to have very little off targeting. Purpose: A major detriment to RNAi is off-targeting. We wished to assess the level of off targeting of microRNA (ultramiR) housed shERWOOD shRNAs as compared to similar shRNAs in the TRC collection. Methods: 5 shRNAs targeting each of two genes were infected into the 4T1 cell line. For each gene one shRNA was selected from the TRC collection and one based on the shERWOOD algorithm. For each gene, the exrpession profiles of the corresponding shRNA infected cells were compared using RNAseq. Conclusions: Highly similar profiles were observed between shERWOOD selected shRNAs. TRC shRNAs produced profiles indicative of off-targeting.
Project description:Using an integrative approach combining a Tet-off conditional AML mouse model, global expression profiling following suppression of the driving MLL-AF9 oncogene, and a new Tet-on conditional shRNA expression system we have identified Myb as critical mediator of addiction to MLL-AF9. Suppression of Myb in established AML in vivo terminates aberrant self-renewal and triggers a terminal myeloid differentiation program that precisely phenocopies the effects of suppressing MLL-AF9. Remarkably, suppressing Myb effectively eradicates aggressive and chemotherapy resistant AML. To further investigate Myb dependent transcriptional programs involved in mediating aberrant self-renewal in leukemia, we globally surveyed gene expression changes following acute shRNA-induced suppression of Myb in an established Tet-on competent model of MLL-AF9;NrasG12D-induced AML. To enable regulatable suppression of Myb in AML, we retrovirally transduced established Tet-on competent MLL-AF9;NrasG12D induced AML cells with TRMPV-Neo vectors (Zuber et al., Nature Biotech, 2010) harboring shRNAs targeting Myb (shMyb.2572 and shMyb.2652), a control shRNA targeting Renilla Luciferase (shRen.713), or an empty miR30 cassette of the recipient cloning vector (Rec). Following drug selection, shRNA expression was induced by doxycycline treatment and total RNA was isolated from sorted shRNA expressing (Venus+/dsRed+) leukemia cells after 3 days of dox treatment, and subjected to Affymetrix microarray expression analysis. Expression profiles following expression of two independent Myb shRNAs were compared to those observed after induction in shRen.713- and Rec-expressing control samples (each in 3 biological replicates).
Project description:In this study, the properties of circulating EVs were examined in cerebral palsy (CP) and typically developed (TD) individuals at rest and after aerobic exercise. We performed smallRNA-seq anf focused on the microRNA cargo of EVs
Project description:microRNAs (miRNAs) are small non-coding RNAs that function in literally all cellular processes. miRNAs interact with Argonaute (Ago) proteins and guide them to specific target sites located in the 3’ untranslated region (UTR) of target mRNAs leading to translational repression and deadenylation-induced mRNA degradation. Most miRNAs are processed from hairpin-structured precursors by the consecutive action of the RNase III enzymes Drosha and Dicer. However, processing of miR-451 is Dicer-independent and cleavage is mediated by the endonuclease Ago2. Here we have characterized miR-451 sequence and structure requirements for processing as well as sorting of miRNAs into different Ago proteins. Pre-miR-451 appears to be optimized for Ago2 cleavage and changes result in reduced processing. In addition, we show that the mature miR-451 only associates with Ago2 suggesting that mature miRNAs are not exchanged between different members of the Ago protein family. Based on cloning and deep sequencing of endogenous miRNAs associated with Ago1-3, we do not find evidence for miRNA sorting in human cells. However, Ago identity appears to influence the length of some miRNAs, while others remain unaffected. Examination of miRNAs associated with endogenous human Ago1-4 in HeLa cells
Project description:Sub-genomewide shRNAs constructed using an optimized selection algorithm and microRNA backbone provide stronger evidence for follow-up studies