Project description:Identifying the interaction partners of non-coding RNAs is essential for elucidating their functions. We have developed an approach, termed microRNA-cross-linking and immunoprecipitation (miR-CLIP), using pre-miRNAs modified with psoralen and biotin to capture their targets in cells. Photo-cross-linking and Argonaute 2-immunopurification followed by streptavidin affinity-purification of probe-linked RNAs provided selectivity in the capture of targets, identified by deep-sequencing. MiR-CLIP with pre-miR-106a, a miR-17-5p family member, identified hundreds of putative targets in HeLa cells, many carrying conserved sequences complementary to the miRNA seed but also many that were not predicted computationally. MiR-106a overexpression experiments confirmed that miR-CLIP captured functional targets, including H19, a long-non-coding RNA that is expressed during skeletal muscle cell differentiation. We showed that miR-17-5p family members bind H19 in HeLa cells and myoblasts. During myoblast differentiation levels of H19, miR-17-5p family members and mRNA targets changed in a manner suggesting that H19 acts as a sponge for these miRNAs. Two replicates of three cDNA libraries were submitted to deep sequencing: a sample from RNA-7-transfected cells; a sample from pre-miR-106a transfected cells; and a control sample.
Project description:Identifying the interaction partners of non-coding RNAs is essential for elucidating their functions. We have developed an approach, termed microRNA-cross-linking and immunoprecipitation (miR-CLIP), using pre-miRNAs modified with psoralen and biotin to capture their targets in cells. Photo-cross-linking and Argonaute 2-immunopurification followed by streptavidin affinity-purification of probe-linked RNAs provided selectivity in the capture of targets, identified by deep-sequencing. MiR-CLIP with pre-miR-106a, a miR-17-5p family member, identified hundreds of putative targets in HeLa cells, many carrying conserved sequences complementary to the miRNA seed but also many that were not predicted computationally. MiR-106a overexpression experiments confirmed that miR-CLIP captured functional targets, including H19, a long-non-coding RNA that is expressed during skeletal muscle cell differentiation. We showed that miR-17-5p family members bind H19 in HeLa cells and myoblasts. During myoblast differentiation levels of H19, miR-17-5p family members and mRNA targets changed in a manner suggesting that H19 acts as a sponge for these miRNAs. Two replicates of two cDNA libraries were submitted to deep sequencing: a sample from siH19-transfected cells and a control sample.
Project description:Identifying the interaction partners of non-coding RNAs is essential for elucidating their functions. We have developed an approach, termed microRNA-cross-linking and immunoprecipitation (miR-CLIP), using pre-miRNAs modified with psoralen and biotin to capture their targets in cells. Photo-cross-linking and Argonaute 2-immunopurification followed by streptavidin affinity-purification of probe-linked RNAs provided selectivity in the capture of targets, identified by deep-sequencing. MiR-CLIP with pre-miR-106a, a miR-17-5p family member, identified hundreds of putative targets in HeLa cells, many carrying conserved sequences complementary to the miRNA seed but also many that were not predicted computationally. MiR-106a overexpression experiments confirmed that miR-CLIP captured functional targets, including H19, a long-non-coding RNA that is expressed during skeletal muscle cell differentiation. We showed that miR-17-5p family members bind H19 in HeLa cells and myoblasts. During myoblast differentiation levels of H19, miR-17-5p family members and mRNA targets changed in a manner suggesting that H19 acts as a sponge for these miRNAs. Two replicates of four cDNA libraries were submitted to deep sequencing: an RNA M-bM-^@M-^\InputM-bM-^@M-^] sample from RNA-12-transfected cells; a sample of the Ago2-immunopurified RNA from cells treated with transfection reagent (M-bM-^@M-^\MockM-bM-^@M-^]); a sample of the Ago2-immunopurified RNA from RNA-12-treatment (M-bM-^@M-^\Ago2-IPM-bM-^@M-^]); and the sample from miR-CLIP-purified RNA (M-bM-^@M-^\miR-CLIPM-bM-^@M-^]).
Project description:Identifying the interaction partners of non-coding RNAs is essential for elucidating their functions. We have developed an approach, termed microRNA-cross-linking and immunoprecipitation (miR-CLIP), using pre-miRNAs modified with psoralen and biotin to capture their targets in cells. Photo-cross-linking and Argonaute 2-immunopurification followed by streptavidin affinity-purification of probe-linked RNAs provided selectivity in the capture of targets, identified by deep-sequencing. MiR-CLIP with pre-miR-106a, a miR-17-5p family member, identified hundreds of putative targets in HeLa cells, many carrying conserved sequences complementary to the miRNA seed but also many that were not predicted computationally. MiR-106a overexpression experiments confirmed that miR-CLIP captured functional targets, including H19, a long-non-coding RNA that is expressed during skeletal muscle cell differentiation. We showed that miR-17-5p family members bind H19 in HeLa cells and myoblasts. During myoblast differentiation levels of H19, miR-17-5p family members and mRNA targets changed in a manner suggesting that H19 acts as a sponge for these miRNAs. Two replicates of four cDNA libraries were submitted to deep sequencing: an RNA M-bM-^@M-^\InputM-bM-^@M-^] sample from RNA-7-transfected cells; a sample of the Ago2-immunopurified RNA from cells treated with transfection reagent (M-bM-^@M-^\MockM-bM-^@M-^]); a sample of the Ago2-immunopurified RNA from RNA-7-treatment (M-bM-^@M-^\Ago2-IPM-bM-^@M-^]); and the sample from miR-CLIP-purified RNA (M-bM-^@M-^\miR-CLIPM-bM-^@M-^]).
Project description:In this experiment, we want to assess the effect of a lentiviral miR-10a and miR-335 overexpression on the transcriptome of murine LSK (Lin-,Sca-1+,c-Kit+) cells. Primary LSK cells were transduced with lentiviral miRNA overexpression constructs (control: GFP overexpression) and sorted for transduced cells (GFP+) after five days of in vitro culture (Flt-3, TPO, IL-3, SCF containing media).
Project description:Using CRISPR-Cas9 technology, we stably disrupted an insulator element in two different TNBC cell lines. The aim of this experiment was to characterize the chromatin accessibility profile using ATAC-seq. For this experiment, we selected three biological replicates of MDA-MB-231 (WT and IE8dis) and MDA-MB-436 (WT and IE8dis).
Project description:A1AT deficiency is an autosomal not recessive disorder caused by mutations in the SERPINA1 gene. Individuals with the Z variant retain polymerised protein in the endoplasmic reticulum of hepatocytes, predisposing them to liver disease. This study primarily aimed to uncover the molecular mechanisms that link protein misfolding to liver injury. To that end, RNA was extracted from hepatocytes differentiated from hIPSCs carrying the Z variant and mutation-corrected hIPSCs (control). The second objective of the study was to benchmark the gene expression profile of both hIPSC-derived hepatocytes types to primary hepatocytes of wild type and a Z variant A1AT genotype.
Project description:To assess the efficacy of AdV-VP55 mediated degredation of host miRNAs. Small RNA profiles of HEK 293T cells treated with type 5 Adeno vectors expressing either GFP or GFP-VP55 for 24 hours
Project description:Aging is a multifactorial process where deterioration of body functions is driven by stochastic damage while counteracted by distinct genetically encoded repair systems. To better understand the genetic component of aging, many studies have addressed the gene and protein expression profiles of various aging model systems engaging different organisms from yeast to human. The recently identified small non-coding miRNAs are potent post-transcriptional regulators that can modify the expression of up to several hundred target genes per single miRNA, similar to transcription factors. Increasing evidence shows that miRNAs contribute to the regulation of most if not all important physiological processes, including aging. However, so far the contribution of miRNAs to age-related and senescence-related changes in gene expression remains elusive. To address this question, we have selected four replicative cell aging models including endothelial cells, replicated CD8(+) T cells, renal proximal tubular epithelial cells, and skin fibroblasts. Further included were three organismal aging models including foreskin, mesenchymal stem cells, and CD8(+) T cell populations from old and young donors. Using locked nucleic acid-based miRNA microarrays, we identified four commonly regulated miRNAs, miR-17 down-regulated in all seven; miR-19b and miR-20a, down-regulated in six models; and miR-106a down-regulated in five models. Decrease in these miRNAs correlated with increased transcript levels of some established target genes, especially the cdk inhibitor p21/CDKN1A. These results establish miRNAs as novel markers of cell aging in humans.
Project description:Pro-inflammatory cytokine TNFα antagonizes regulatory T cell (Treg) suppressive function with a measurable reduction of IL-10 protein secretion. Tregs are critical to suppress excessive immune activation, particularly within the intestine where high antigenic loads elicit chronic subclinical immune activation. Employing a TNFα-driven murine inflammatory bowel disease (IBD) model (TNFΔARE/+), which mirrors the Treg expansion and transmural ileitis seen in Crohn's disease, we demonstrate that the TNFα-mediated loss of Treg suppressive function coincides with induction of a specific miRNA, miR-106a in both humans and mice, via NFκB promoter binding to suppress post-transcriptional regulation of IL-10 release. Elevation of miR-106a and impaired Treg function in this model recapitulate clinical data from IBD patients. MiR-106a deficiency promotes Treg induction, suppressive function and IL-10 production in vitro. MiR-106a knockout attenuated chronic murine ileitis, whereas T cell restricted deficiency of miR-106a attenuated adoptive transfer colitis. In both models, attenuated inflammation coincided with suppression of both Th1 and Th17 cell subset expansion within the intestinal lamina propria. Collectively, our data demonstrate impaired Treg suppressive function in a murine IBD model consistent with human disease and support the potential for inhibition of miR-106a as a future therapeutic approach to treat chronic inflammatory conditions including IBD.