Microarray analysis among non-alcoholic fatty liver, non-alcoholic steatohepatitis, and type 2 diabetes mellitus rats
Ontology highlight
ABSTRACT: Non-alcoholic fatty liver (NAFL) has the potential to progress to non-alcoholic steatohepatitis (NASH) or to promote type 2 diabetes mellitus (T2DM). However, NASH and T2DM do not always develop coordinately. We established rat models of NAFL, NASH, and NAFL + T2DM to recapitulate different phenotypes associated with NAFLD and its progression. Microarrays were used to identify hepatic gene expression changes in each of these models. The goal is to identify a predictor of different NAFLD progressions. Non-alcoholic fatty liver disease (NAFLD) is recognized as a low-grade systemic inflammatory state with both hepatic and extra-hepatic manifestations. We aimed to identify common key regulators and adaptive pathways in different NAFLD phenotypes. NAFL, NASH and NAFL+T2DM rat models were used to represent simple fatty liver, fatty liver with severe hepatic manifestations, and fatty liver with severe metabolic manifestations, respectively. We applied microarray analysis to characterize the key regulators and adaptive pathways in different NAFLD phenotypes. There are 12 samples in our study which belonged to 4 groups, and each group contains 3 different samples.
Project description:Non-alcoholic fatty liver (NAFL) has the potential to progress to non-alcoholic steatohepatitis (NASH) or to promote type 2 diabetes mellitus (T2DM). However, NASH and T2DM do not always develop coordinately. We established rat models of NAFL, NASH, and NAFL + T2DM to recapitulate different phenotypes associated with NAFLD and its progression. Microarrays were used to identify hepatic gene expression changes in each of these models. The goal is to identify a predictor of different NAFLD progressions. Non-alcoholic fatty liver disease (NAFLD) is recognized as a low-grade systemic inflammatory state with both hepatic and extra-hepatic manifestations. We aimed to identify common key regulators and adaptive pathways in different NAFLD phenotypes. NAFL, NASH and NAFL+T2DM rat models were used to represent simple fatty liver, fatty liver with severe hepatic manifestations, and fatty liver with severe metabolic manifestations, respectively. We applied microarray analysis to characterize the key regulators and adaptive pathways in different NAFLD phenotypes.
Project description:Non-alcoholic fatty liver disease (NAFLD) comprises a collection of chronic liver disorders distinguished by the excessive accumulation of lipids within hepatocytes and the presence of steatosis. It covers a range of liver conditions that vary from simple steatosis (non-alcoholic fatty liver, NAFL) to non-alcoholic steatohepatitis (NASH). In this study, hepatic gene expression was compared among 6 patients with NAFL, 4 with NASH, and 6 healthy controls. All of these samples were collected prior to the liver transplantation procedure. Subsequently, differential genes were identified through comparative analysis of sequencing results, and target genes potentially related to the pathogenesis of NAFLD were further investigated. Numerous potential target genes and pathways have been identified in NAFLD, providing potential targets for therapeutic interventions.
Project description:Non-alcoholic fatty liver disease (NAFLD) represents a spectrum of conditions ranging from simple steatosis (NAFL), over non-alcoholic steatohepatitis (NASH) with or without fibrosis, to cirrhosis with end-stage disease. The hepatic molecular events underlying the development of NAFLD and transition to NASH are poorly understood. The present study aimed to determine hepatic transcriptome dynamics in patients with NAFL or NASH compared to healthy normal-weight and obese individuals. RNA sequencing and quantitative histomorphometry of liver fat, inflammation and fibrosis was performed on liver biopsies obtained from healthy normal weight (n=14) and obese (n=12) individuals, NAFL (n=15) and NASH (n=16) patients. Normal weight and obese subjects showed normal liver histology and comparable gene expression profiles. Liver transcriptome signatures were largely overlapping in NAFL and NASH patients, however, clearly separated from healthy normal-weight and obese controls. Most marked pathway perturbations identified in both NAFL and NASH were associated with markers of lipid metabolism, immunomodulation, extracellular matrix remodeling and cell cycle control. Interestingly, NASH patients with positive Sonic hedgehog hepatocyte staining showed distinct transcriptome and histomorphometric changes compared to NAFL. In conclusion, application of immunohistochemical markers of hepatocyte injury may serve as a more objective tool for distinguishing NASH from NAFL, facilitating improved resolution of hepatic molecular changes associated with progression of NAFLD.
Project description:Non-alcoholic fatty liver disease (NAFLD) is characterized by a series of pathological changes that can progress from simple fatty liver disease to non-alcoholic steatohepatitis (NASH). The objective of this study is to describe changes in global gene expression associated with the progression of NAFLD. This study is focused on the expression levels of genes responsible for the absorption, distribution, metabolism and excretion (ADME) of drugs. Differential gene expression between three clinically defined pathological groups; normal, steatosis and NASH was analyzed. The samples were diagnosed as normal, steatotic, NASH with fatty liver (NASH fatty) and NASH without fatty liver (NASH NF). Genome-wide mRNA levels in samples of human liver tissue were assayed with Affymetrix GeneChipM-. Human 1.0ST arrays
Project description:Non-alcoholic fatty liver disease/steatohepatitis (NAFLD/NASH) is a significant risk factor for hepatocellular carcinoma (HCC). However, a preclinical model of progressive NAFLD/NASH is largely lacking. Here, we report that mice with hepatocyte-specific deletion of Tid1, encoding a mitochondrial cochaperone, tended to develop NASH-dependent HCC. Mice with hepatic Tid1 deficiency showed impairing mitochondrial function and causing fatty acid metabolic dysregulation; meanwhile, sequentially developed fatty liver, NASH, and cirrhosis/HCC in a diethylnitrosamine (DEN) induced oxidative environment. The pathological signatures of human NASH, including cholesterol accumulation and activation of inflammatory and apoptotic signaling pathways, are also present in these mice. Clinically, low Tid1 expression was associated with unfavorable prognosis in patients with HCC. Empirically, hepatic Tid1 deficiency directly disrupts entire mitochondria that play a key role in the NASH-dependent HCC development. Overall, we established a new mouse model that develops NASH-dependent HCC and provides a promising approach to improve the treatment.
Project description:Global gene expression patterns of 2 human steatosis and 9 human non-alcoholic steatohepatitis (NASH) together with their respective control patterns were analyzed to define the non-alcoholic fatty liver disease (NAFLD) progression molecular characteristics and to define NASH early markers from steatosis. Human liver samples of steatosis and non-alcoholic steatohepatitis were selected for RNA extraction and hybridization on Affymetrix microarrays. This dataset is part of the TransQST collection.
Project description:We investigated the hepatic transcriptome of 58 biopsy-proven NAFLD patients at multiple stages of the disease (NAFL, NASH with mild fibrosis, NASH with advanced fibrosis) with the aim of describing the pathophysiological events driving the development and progression of NASH.
Project description:Non-alcoholic fatty liver disease (NAFLD) is a growing health problem worldwide, ranging from non-alcoholic fatty liver (NAFL) to the more severe metabolic non-alcoholic steatohepatitis (NASH). Although many studies have elucidated the pathogenesis of NAFLD, the epigenetic regulatory mechanism from NAFL to NASH remains incompletely understood. The histone H3 lysine 4 methyltransferase, MLL4 (also called KMT2D), is a critical epigenetic transcriptional coactivator that mediates overnutrition-induced steatosis in mice, but its potential role in the progression of NASH remains largely unknown. Here, we show that mice lacking the one allele of the Mll4 gene are resistant to hepatic steatosis, inflammation, and fibrosis in NASH conditions compared to wild-type controls. Transcriptome analysis of the livers of control and Mll4+/- mice identified pro-inflammatory genes regulated by the nuclear factor kappa B (NF-κB) signaling pathway as major target genes of MLL4. We show that MLL4 binds to p65 and that MLL4 is required for NF-κB transactivation. Myeloid-specific Mll4 knockout mice showed an almost complete block of NASH, while hepatocyte-specific Mll4 knockout mice showed mild inhibition of steatosis. Pro-inflammatory M1 polarization is decreased and anti-inflammatory M2 polarization is increased in liver macrophages from myeloid-specific Mll4 knockout mice. Importantly, we show that histone H3-lysine 4 methylation mediated by the MLL4-complex plays a critical role in promoting the expression of Ccl2 in hepatocytes and M1 marker genes in macrophages. Our results demonstrate that MLL4, through the NF-κB-MLL4 regulatory axis, exacerbates steatohepatitis in the context of an inflammatory response and represents a potential therapeutic target for NASH.
Project description:Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are major contributors of chronic liver disease. There is an urgent need to identity non-invasive biomarkers for early diagnosis. This project preformed secretome analysis of >100 human liver samples with various stages of NAFLD and NASH to identify potential biomarkers.
Project description:Background & Aims: Overnutrition is one of the major causes of non-alcoholic fatty liver disease (NAFLD) and its advanced form non-alcoholic steatohepatitis (NASH). Besides the quantity of consumed calories, distinct dietary components are increasingly recognized as important contributor to the pathogenesis of NASH. We aimed to develop and characterize a hitherto missing murine model which resembles both the pathology and nutritional situation of NASH-patients in Western societies. Methods: We developed a NASH-inducing diet (ND) enriched with sucrose, cholesterol and a high concentration of fats rich in saturated fatty acids in a composition which mimics Western food. C57Bl6/N mice were fed with the ND or control chow for 12 weeks. Biochemical, real-time polymerase chain reaction, Western Blot and immunohistochemical analyses were performed to characterize systemic and hepatic changes induced by ND-feeding. Immunohistochemistry was used to assess c-Jun levels and activation in 110 human NAFLD and control liver specimens applying tissue micro array technology. Results: ND-fed mice showed significant body weight gain, impaired glucose tolerance, elevated fasting blood glucose levels as well as decreased adiponectin and increased leptin serum levels compared to control mice. In the liver, ND-feeding led to marked steatosis, enhanced cholesterol levels, distinct signs of oxidative stress, hepatocellular damage, inflammation, activation of hepatic stellate cells, and beginning fibrosis. Transcriptome-wide hepatic gene expression analysis comparing ND-fed mice and control mice indicated main alterations in lipid metabolism and inflammatory processes. Search for over-represented transcription factor target sites among the differentially expressed genes identified AP-1 as the most likely factor to cause the transcriptional changes in ND-livers. Combining differentially expressed gene and protein-protein interaction network analysis identified c-Jun (a component of the AP-1 complex) as hub in the largest connected deregulated sub-network in ND-livers. In accordance, ND-livers revealed c-Jun-phosphorylation and nuclear translocation. Moreover, hepatic c-Jun RNA and protein expression was enhanced in ND-fed compared to control mice. Also NAFLD-patients showed enhanced hepatic c-Jun levels, which correlated with inflammation, and notably, with the degree of hepatic steatosis. Conclusions: The new dietary mouse-model shows important pathological changes also found in human NASH and indicates c-jun/AP-1 activation as critical regulator of hepatic alterations. Abundance of c-jun in NAFLD likely facilitates development and progression of NASH, and thus, c-jun appears as attractive prognostic and therapeutic target of NAFLD progression. 14-weeks old male C57BL/6N mice were fed with either regular diet or a newly designed NASH-inducing diet for 12 weeks. Hepatic gene expression levels were measured thereafter.