Effect of aryl hydrocarbon receptor (Ahr) gene knockout on expression profiles of aged (18-month-old) murine hematopoietic stem cells
Ontology highlight
ABSTRACT: As part of a study of the role of the aryl hydrocarbon receptor (Ahr) in maintenance and senescence of hematopoietic stem cells (HSC), global gene expression profiling was done with HSC isolated from 18-month-old Ahr-knockout and wild-type mice. HSC from aged AhR-KO mice had changes in expression of many genes related to HSC maintenance, consistent with the phenotype observed in aging Ahr-KO mice: decreased survival rate, splenomegaly, increased circulating white blood cells, hematopoietic cell accumulation in tissues, anemia, increased numbers of stem/progenitor and lineage-committed cells in bone marrow, decreased erythroid progenitor cells in bone marrow, and decreased self-renewal capacity of HSC. 10 samples: 5 Ahr knockout, 5 wild-type
Project description:As part of a study of the role of the aryl hydrocarbon receptor (Ahr) in maintenance and senescence of hematopoietic stem cells (HSC), global gene expression profiling was done with HSC isolated from Ahr-knockout and wild-type mice. HSC from young-adult (8 wk old) AhR-KO mice had changes in expression of many genes related to HSC maintenance, consistent with the phenotype observed in aging Ahr-KO mice: decreased survival rate, splenomegaly, increased circulating white blood cells, hematopoietic cell accumulation in tissues, anemia, increased numbers of stem/progenitor and lineage-committed cells in bone marrow, decreased erythroid progenitor cells in bone marrow, and decreased self-renewal capacity of HSC. 7 samples: 3 Ahr knockout, 4 wild-type
Project description:As part of a study of the role of the aryl hydrocarbon receptor (Ahr) in maintenance and senescence of hematopoietic stem cells (HSC), global gene expression profiling was done with HSC isolated from bone marrow restricted conditional Ahr-knockout and AhR floxed mice. HSC from young-adult (8 wk old) cAhR-KO mice had changes in expression of many genes related to HSC maintenance, consistent with the phenotype observed in Ahr-KO mice. Aged cAhR-KO mice (18 months old) also displayed alterations in peripheral white blood cell counts, serial repopulation potential and levels of ROS in bone marrow cells, consistent with previous observations on the role of AhR in the hematopoietic system. 22 samples: 5 young Ahr knockout, 6 old Ahr knockout, 5 young floxed Ahr, 6 old floxed Ahr
Project description:As part of a study of the role of the aryl hydrocarbon receptor (Ahr) in maintenance and senescence of hematopoietic stem cells (HSC), global gene expression profiling was done with HSC isolated from 18-month-old Ahr-knockout and wild-type mice. HSC from aged AhR-KO mice had changes in expression of many genes related to HSC maintenance, consistent with the phenotype observed in aging Ahr-KO mice: decreased survival rate, splenomegaly, increased circulating white blood cells, hematopoietic cell accumulation in tissues, anemia, increased numbers of stem/progenitor and lineage-committed cells in bone marrow, decreased erythroid progenitor cells in bone marrow, and decreased self-renewal capacity of HSC.
Project description:As part of a study of the role of the aryl hydrocarbon receptor (Ahr) in maintenance and senescence of hematopoietic stem cells (HSC), global gene expression profiling was done with HSC isolated from Ahr-knockout and wild-type mice. HSC from young-adult (8 wk old) AhR-KO mice had changes in expression of many genes related to HSC maintenance, consistent with the phenotype observed in aging Ahr-KO mice: decreased survival rate, splenomegaly, increased circulating white blood cells, hematopoietic cell accumulation in tissues, anemia, increased numbers of stem/progenitor and lineage-committed cells in bone marrow, decreased erythroid progenitor cells in bone marrow, and decreased self-renewal capacity of HSC.
Project description:As part of a study of the role of the aryl hydrocarbon receptor (Ahr) in maintenance and senescence of hematopoietic stem cells (HSC), global gene expression profiling was done with HSC isolated from bone marrow restricted conditional Ahr-knockout and AhR floxed mice. HSC from young-adult (8 wk old) cAhR-KO mice had changes in expression of many genes related to HSC maintenance, consistent with the phenotype observed in Ahr-KO mice. Aged cAhR-KO mice (18 months old) also displayed alterations in peripheral white blood cell counts, serial repopulation potential and levels of ROS in bone marrow cells, consistent with previous observations on the role of AhR in the hematopoietic system.
Project description:We used ChIP-Seq to map Ldb1, Scl and Gata2 binding sites in mouse hematopoietic progenitor cells (HPCs). Together with functional studies using conventional and conditional Ldb1 deficient mouse models and bioinformatics analysis, we systematically determined a transcriptional program controlled by Ldb1 complexes in HSC maintenance. To evaluate the role of Ldb1 in hematopoietic stem cell maintenance.
Project description:The transcriptome of WT and Rarb KO hematopoietic stem cells (HSC) after 24h in vitro culture upon retinoid treatment was assessed by RNAseq.
Project description:we investigate the role of YTHDC1 in normal hematopoiesis and adult hematopoietic stem/progenitor cell (HSPC) maintenance in vivo. Utilizing conditional Ythdc1 knockout mice ,we show that YTHDC1 is required for hematopoietic stem cell (HSC) maintenance as well as self-renewal of HSC. Transcriptome analysis identified many differentially expressed genes (DEGs) between WT and YTHDC1-KO LT-HSCs.
Project description:We identified the ubiquitin ligase Huwe1 as a crucial regulator of hematopoietic stem cell (HSC) functions. We generated Huwe1 conditional knock-out mice and discovered that the loss of this ligase causes an increased proliferation and stem cell exhaustion, together with a decreased lymphoid specification in vivo. We observed that the ubiquitin ligase Huwe1 is controlling the expression of N-myc at the level of the most immature stem and progenitor hematopoietic populations, mediating the described effects. Hematopoietic stem cells (HSC) from the bone marrow of transgenic animals carrying a N-myc/mCherry fusion gene were sorted according to N-myc expression (defined by mCherry) into N-myc high and low subpopulations. Each of these 2 populations was subjected to microarray gene expression profiling.
Project description:Adult and fetal hematopoietic stem cells (HSCs) display a glycolytic phenotype, which is required for maintenance of stemness; however, whether mitochondrial respiration is required to maintain HSC function is not known. Here we report that loss of the mitochondrial complex III subunit Rieske iron sulfur protein (RISP) in fetal mouse HSCs allows them to proliferate but impairs their differentiation, resulting in anemia and prenatal death. RISP null fetal HSCs displayed impaired respiration resulting in a decreased NAD+/NADH ratio. RISP null fetal HSCs and progenitors exhibited an increase in both DNA and histone methylation concomitant with increases in 2-hydroxyglutarate (2-HG), a metabolite known to inhibit DNA and histone demethylases. RISP inactivation in adult HSCs also impaired respiration resulting in loss of quiescence resulting in severe pancytopenia and lethality. Thus, respiration is dispensable for adult or fetal HSC proliferation, but essential for fetal HSC differentiation and maintenance of adult HSC quiescence.