Methylation Profile of dry seed from Arabidopsis ddcc mutant
Ontology highlight
ABSTRACT: The role of on-CG methylation in seed development and dormancy remains unknown. There are four genes in charge of non-CG methylation in Arabidopsis: drm1, drm2, cmt2 and cmt3. The majority of non-CG methylation in vegetative tissues, leaf, is gone in homozygous ddcc mutant line (Hume et al., 2014). To uncover the possible role of non-CG DNA methylation in seed development and dormancy, we characterized the methylome of ddcc mutant in Arabidopsis dry seed using Illumina sequencing. Meanwhile, vegetative tissue, leaves from 3 week plant with ddcc mutant and from wild type, and dry seed from wild type plant were used as control. Illumina sequencing of bisulfite-converted genomic DNA from dry seed and 3-week-plant leaves of ddcc mutant and wild type.
Project description:There are four major seed developmental phases in Arabidopsis seed development: morphogenesis, maturation, dormancy and germination. What methylation changes occurring in the different phases, if any, remains unknown. To uncover the possible role of DNA methylation in different parts of the seed, we characterized the methylome of four major seed developmental phases of Arabidopsis using Illumina sequencing: global stage (glob) and linear cotyledon stage (lcot) for morphogenesis phase; mature green stage (mg) and post mature green stage (pmg) for maturation phase; dry seed (dry) for dormancy phase; leaves (leaf) from 4 week plant for vegetative tissues. Illumina sequencing of bisulfite-converted genomic DNA from six seed developmental stages in Arabidopsis: global stage (glob), linear cotyledon stage (lcot), mature green stage (mg), post mature green stage (pmg), dry seed (dry) and leaves (leaf) from 4 week plant.
Project description:What methylation changes are occurring during seed development largely remains unknown. To uncover the possible role of DNA methylation during the transition from seed differentiation to maturation and dormany in soybean, we characterized the methylome of whole seeds representing the differentiation (GLOB stage), maturation (early- (EM), mid- (B1) and late- (AA1) maturation stages), and dormancy (DRY stage) phases of soybean seed development using Illumina sequencing. In addition, we characterized the methylome of the mid-maturation stage embryonic axis (B1-AX) to examine methylation differences, if any, between an embryonic region compared to the whole seed. Illumina sequencing of bisulfite-converted genomic DNA from globular stage (GLOB), early-maturation stage (EM), mid-maturation stage (B1), and late-maturation stage (AA1) seeds, dormancy stage (DRY) and mid-maturation embryonic axis (B1-AX).
Project description:Seeds are comprised of three major parts of distinct parental origin: the seed coat, embryo, and endosperm. The maternally-derived seed coat is important for nurturing and protecting the seeds during development. By contrast, the embryo and the endosperm are derived from a double fertilization event, where one sperm fertilizes the egg to form the diploid zygote and the other sperm fertilizes the central cell to form the triploid endosperm. Each seed part undergoes distinct developmental programs during seed development. What methylation changes occur in the different seed parts, if any, remains unknown. To uncover the possible role of DNA methylation in different parts of the seed, we characterized the methylome of two major parts of Arabidopsis mature green stage seeds, the seed coat and embryo, using Illumina sequencing. Illumina sequencing of bisulfite-converted genomic DNA from two parts of Arabidopsis mature green seeds: seed coat (SC) and embryo (EMB).
Project description:Seeds are comprised of three major parts of distinct parental origin: the seed coat, embryo, and endosperm. The maternally-derived seed coat is important for nurturing and protecting the seeds during development. By contrast, the embryo and the endosperm are derived from a double fertilization event, where one sperm fertilizes the egg to form the diploid zygote and the other sperm fertilizes the central cell to form the triploid endosperm. Each seed part undergoes distinct developmental programs during seed development. What methylation changes occur in the different seed parts, if any, remains unknown. To uncover the possible role of DNA methylation in different parts of the seed, we characterized the methylome of three major parts of cotyledon stage seeds, the seed coat, embryonic cotyledons, and embryonic axis, using Illumina sequencing. Illumina sequencing of bisulfite-converted genomic DNA from three parts of soybean cotyledon stage seeds: seed coat (COT-SC), embryonic cotyledons (COT-COT), and embryonic axis (COT-AX).
Project description:What methylation changes are occurring in different parts of early maturation stage seed largely remains unknown. To uncover the possible role of DNA methylation in different parts of early maturation stage seed, we characterized the methylome of seed coats,cotyledons, and the embryonic seed axis using Illumina sequencing. seed coats, cotyledon, and axis
Project description:What methylation changes are occurring in different compartments of early maturation stage seed largely remains unknown. To uncover the possible role of DNA methylation in different compartments of early maturation stage seed, we characterized the methylome of two major compartments in embryonic cotyledon: cotyledon abaxial parenchyma (EM-COT-ABPY) and cotyledon adaxial parenchyma (EM-COT-ADPY) using Illumina sequencing. Illumina sequencing of bisulfite-converted genomic DNA from cotyledon abaxial parenchyma (EM-COT-ABPY) and cotyledon adaxial parenchyma (EM-COT-ADPY) compartments.
Project description:Seeds are comprised of three majors parts of distinct parental origin: the seed coat, embryo, and endosperm. The maternally-derived seed coat is important for nurturing and protecting the seeds during development. By contrast, the embryo and the endosperm are derived from a double fertilization event, where one sperm fertilizes the egg to form the diploid zygote and the other sperm fertilizes the central cell to form the triploid endosperm. Each seed parts undergo distinct developmental programs during seed development. What methylation changes occurring in the different seed parts, if any, remains unknown. To uncover the possible role of DNA methylation in different parts of the seed, we characterized the methylome of three major parts of an early maturation stage seed: seed coat, embryonic cotyledons, and embryonic axis using Illumina sequencing. Illumina sequencing of bisulfite-converted genomic DNA from three parts of an mid-maturation (B1) stage seed: seed coat (B1-SC), embryonic cotyledons (B1-COT), and embryonic axis (B1-AX).
Project description:The role of non-CG methylation in seed development and dormancy remains unknown. There are four genes in charge of non-CG methylation in Arabidopsis: drm1, drm2, cmt2 and cmt3. The majority of non-CG methylation in vegetative tissues, leaf, is gone in homozygous ddcc mutant line (Hume et al., 2014). To uncover the possible role of non-CG DNA methylation in seed development and dormancy, we characterized the methylome of ddcc mutant in Arabidopsis postmature-green-stage seed and dry seed using Illumina sequencing. Meanwhile, vegetative tissue, leaves from 3 week plant with ddcc mutant and from wild-type, and postmature-green-stage seed and dry seed from wild-type plant were used as control.
Project description:The role of on-CG methylation in seed development and dormancy remains unknown. There are four genes in charge of non-CG methylation in Arabidopsis: drm1, drm2, cmt2 and cmt3. The majority of non-CG methylation in vegetative tissues, leaf, is gone in homozygous ddcc mutant line (Hume et al., 2014). To uncover the possible role of non-CG DNA methylation in seed development and dormancy, we characterized the transcriptome of ddcc mutant in Arabidopsis post-mature green seeds using Illumina sequencing. Meanwhile, post-mature green seeds from wild type were used as control. Illumina sequencing of transcripts from post-mature green seeds of ddcc mutant and wild type. Two biological replicates were collected.