A Molecular Portrait Of High-Grade Ductal Carcinoma In Situ (DCIS)
Ontology highlight
ABSTRACT: This SuperSeries is composed of the SubSeries listed below. Description of samples employed for the subseries NGS analyses including age, race, ER/PR immunohistochemistry results, ITIL/STIL scores and PAM50 classification is provided in the 'Supplementary Data1_Samples data.xlsx'. Refer to individual Series
Project description:DCIS is a non-invasive precursor lesion to invasive breast carcinoma. We still have no understanding on why only some DCIS lesions evolve to invasive cancer while others appear not to do so during the life span of the patient. Here, we performed full exome (tumor vs. matching normal), transcriptome and methylome analysis of 30 pure high-grade DCIS (HG-DCIS) and 10 normal breast epithelial samples. Sixty two percent of HG-DCIS cases displayed mutations affecting cancer driver genes or potential drivers. Mutations were observed affecting PIK3CA (21% of cases), TP53 (17%), GATA3 (7%), MLL3 (7%) and single cases of mutations affecting CDH1, MAP2K4, TBX3, NF1, ATM and ARID1A. Significantly, 83% of lesions displayed numerous large chromosomal copy number alterations, suggesting they might precede selection of cancer driver mutations. Integrated pathway-based modeling analysis of RNA-seq data allowed us to identify two DCIS subgroups (DCIS-C1 and DCIS-C2) based on their tumor intrinsic subtypes, proliferative, immune scores and in the activity of specific signaling pathways. The more aggressive DCIS-C1 (highly proliferative, basal-like or ERBB2+) displayed signatures characteristic of activated Treg cells (CD4+/CD25+/FOXP3+) and CTLA4+/CD86+ complexes indicative of a tumor-associated immune suppressive phenotype. Strikingly, all lesions showed evidence of TP53 pathway inactivation. Similarly ncRNA and methylation profiles reproduce changes observed post-invasion. Among the most significant findings we observed upregulation of lncRNA HOTAIR in DCIS-C1 lesions and hypermethylation of HOXA5 and specific SOX genes. We conclude that most HG-DCIS lesions, in spite of representing a pre-invasive stage of tumor progression, displayed molecular profiles indistinguishable from invasive breast cancer. DNA from 24 out of 30 (80%) HG-DCIS samples and 5 normal breast organoids (total 29 samples) were subjected to reduced representation bisulfite sequencing analysis (RRBS) by using Illumina HiSeq2000 platform. Please note that description of samples employed for the NGS analyses including age, race, ER/PR immunohistochemistry results, ITIL/STIL scores and PAM50 classification is provided the 'Supplementary Data1_Samples data.xlsx' (available on Superseries record)
Project description:DCIS is a non-invasive precursor lesion to invasive breast carcinoma. We still have no understanding on why only some DCIS lesions evolve to invasive cancer while others appear not to do so during the life span of the patient. Here, we performed full exome (tumor vs. matching normal), transcriptome and methylome analysis of 30 pure high-grade DCIS (HG-DCIS) and 10 normal breast epithelial samples. Sixty two percent of HG-DCIS cases displayed mutations affecting cancer driver genes or potential drivers. Mutations were observed affecting PIK3CA (21% of cases), TP53 (17%), GATA3 (7%), MLL3 (7%) and single cases of mutations affecting CDH1, MAP2K4, TBX3, NF1, ATM and ARID1A. Significantly, 83% of lesions displayed numerous large chromosomal copy number alterations, suggesting they might precede selection of cancer driver mutations. Integrated pathway-based modeling analysis of RNA-seq data allowed us to identify two DCIS subgroups (DCIS-C1 and DCIS-C2) based on their tumor intrinsic subtypes, proliferative, immune scores and in the activity of specific signaling pathways. The more aggressive DCIS-C1 (highly proliferative, basal-like or ERBB2+) displayed signatures characteristic of activated Treg cells (CD4+/CD25+/FOXP3+) and CTLA4+/CD86+ complexes indicative of a tumor-associated immune suppressive phenotype. Strikingly, all lesions showed evidence of TP53 pathway inactivation. Similarly ncRNA and methylation profiles reproduce changes observed post-invasion. Among the most significant findings we observed upregulation of lncRNA HOTAIR in DCIS-C1 lesions and hypermethylation of HOXA5 and specific SOX genes. We conclude that most HG-DCIS lesions, in spite of representing a pre-invasive stage of tumor progression, displayed molecular profiles indistinguishable from invasive breast cancer. RNAs from 25 out of 30 (83%) pure HG-DCIS and 10 normal breast organoids (total 35 samples) were subjected to RNA-Seq analysis by using Illumina HiSeq2000 platform Please note that description of samples employed for the NGS analyses including age, race, ER/PR immunohistochemistry results, ITIL/STIL scores and PAM50 classification is provided the 'Supplementary Data1_Samples data.xlsx' (available on Superseries record)
Project description:Despite rapid progress in characterizing transcription factor-driven reprogramming of somatic cells to an induced pluripotent stem (iPS) cell state, many mechanistic questions still remain. To gain insight into the earliest events in the reprogramming process, we systematically analyzed the transcriptional and epigenetic changes that occur during early factor induction after discrete numbers of divisions. We observed rapid, genome-wide changes in the euchromatic histone modification, H3K4me2, at more than a thousand loci including large subsets of pluripotency or developmentally related gene promoters and enhancers. In contrast, patterns of the repressive H3K27me3 modification remained largely unchanged except for focused depletion specifically at positions where H3K4 methylation is gained. These chromatin regulatory events precede transcriptional changes within the corresponding loci. Our data provide evidence for an early, organized, and population-wide epigenetic response to ectopic reprogramming factors that clarify the temporal order through which somatic identity is reset during reprogramming. Genome-scale DNA methylation was measured by reduced representation bisulfite sequencing (RRBS) during the initial phase in the reprogramming of mouse embryonic fibroblasts.
Project description:This SuperSeries is composed of the SubSeries listed below. Description of samples employed for the subseries NGS analyses including age, race, ER/PR immunohistochemistry results, ITIL/STIL scores and PAM50 classification is provided in the 'Supplementary Data1_Samples data.xlsx'.
Project description:Seasonal photoperiodic changes have strong impact on development in Nasonia vitripennis. Here, Using high-throughput Reduced Representation Bisulfite Sequencing (RRBS) and single-molecule-based sequencing, we generated DNA methylation maps of female wasps maintained in long vs short day. We have identified differential methylated loci that encode the photoperiodic change. analysis of DNA methylation in female wasps maintained in long vs short day, using RRBS followed by Illumina sequencing
Project description:We report the generation and analysis of genome-scale DNA methylation profiles at nucleotide resolution in mammalian cells. Using high-throughput Reduced Representation Bisulfite Sequencing (RRBS) and single-molecule-based sequencing, we generated DNA methylation maps covering the vast majority of CpG islands, and a representative sampling of conserved non-coding elements, transposons and other genomic features, for murine embryonic stem (ES) cells, ES-derived and primary neural cells, and eight other primary tissues. Several key findings emerge from the data. First, DNA methylation patterns are better correlated with histone methylation patterns than with the underlying genome sequence context. Second, methylation of CpGs are dynamic epigenetic marks that undergo extensive changes during cellular differentiation, particularly in regulatory regions outside of core promoters. Third, analysis of ES-derived and primary cells reveals that 'weak' CpG islands associated with a specific set of developmentally regulated genes undergo aberrant hypermethylation during extended proliferation in vitro, in a pattern reminiscent of that reported in some primary tumors. More generally, the results establish RRBS as a powerful technology for epigenetic profiling of cell populations relevant to developmental biology, cancer and regenerative medicine. Keywords: High-throughput Reduced Representation Bisulfite Sequencing (RRBS), Illumina, cell type comparison Reduced representation bisulfite sequencing (MspI,~40-220bp size fraction) of 18 murine cell types. Raw sequence data files for this study are available for download from the SRA FTP site at ftp://ftp.ncbi.nlm.nih.gov/sra/Studies/SRP000/SRP000179
Project description:Purpose: The goal of this study was to compare the genome-wide promoter methylation alterations in macrophages and endothelial cells during hindlimb ischemia among normal, hyperlipidemic and type-2 diabetic mice. Methods: Unilateral hindlimb ischemia was induced by ligating femoral artery proximal to the bifurcation of superficial and deep femoral artery in mice deficient of LDL receptor and expressing only apolipoprotein B100 (LDLR-/-ApoB100/100, C57BL/6J background) (The Jackson Laboratory, Bar Harbor,USA) and mice with β-cell specific over-expression of insulin-like growth factor-2 in atherosclerotic background (IGF-II/LDLR-/-ApoB100/100, C57BL/6J background) with type 2 diabetic features on high-fat diet (TD 88173, Harlan Teklad: 42% of calories from fat and 0.15% from cholesterol, no sodium cholate) 8 weeks prior to surgery and continued throughout the study 1. C57BL/6J (WT) mice fed with regular chow-diet (R36, Lactamin) served as controls. All animals were aged between 20 to 24 weeks at the time of hindlimb operations. For sorting macrophages from ischemic muscles, ischemic gastrocnemius muscles were minced and enzymatically dissociated using a cocktail containing 450 U/mL Collagenase I, 125 U/mL Collagenase XI, 60 U/mL DNAseI, and 60 U/mL hyaluronidase (Sigma Aldrich) for 1 h at 37°C. The cells were then counted and divided into CD31+ve and CD31-vefractions using CD31 magnetic bead enrichment (Miltenyi Biotec). For macrophage sorting CD31-ve fraction was incubated for 15 minutes with rat anti-mouse CD16/32 mAb (Fc Block, BD-pharmingen) and stained with FITC conjugated rat anti-mouse F4/80 antibody (Serotec) for 20 minutes at 4ËC. For endothelial sorting CD31+ fraction was incubated for 15 minutes with rat anti-mouse CD16/32 mAb (Fc Block, BD-pharmingen) and stained with APC conjugated rat anti-mouse CD31 antibody (BD-pharmingen) and FITC conjugated rat anti-mouse CD45 ((BD-pharmingen) for 20 minutes at 4ËC. FACS sorting was performed on FACS AriaIII (BD Biosciences). Genomic DNA was isolated from FACS sorted macrophages and endothelial cells using AllPrep DNA/RNA/Protein Mini Kit (Qiagen Finland, Helsinki, Finland) according to manufacturer's instructions. Results: The sample similarity as assessed by Pearsonâs correlation matrix and Hierarchial clustering showed high correalation among macrophages, as well as endothelial cells. There was a clear clustering of macrophages and endothelial cells as evidence by their CpG methylation clustering, furthermore macrophages from HL and T2DM mice showed clear clustering compared to control macrophages. Differential methylation analysis of RRBS methylation data from macrophages and endothelial cells was performed using Methylkit. Using a threshold of adjusted p value (Q) <0.05 and percentage methylation difference of >5%, we identified 198 and 272 genes whose promoters were hypomethylated in HL and T2DM macrophages. Similarly, there were 102 and 136 gene promoters were hypermethylated in HL and T2DM macrophages, respectively compare to control macrophages. Thus, proximal promoter methylation suggested that HL and T2DM have convergent influences on the proximal promoter methylation of numerous macrophage specific genes. In order to find out whether these genes with differential methylated promoters were differentially expressed at mRNA expression level in purified macrophages, we further compared our data with the GEO datasets as above. Of the 198 genes with promoter hypomethylation in HL macrophages 72 genes were suggested to be upregulated in M1- MÏs; whereas, of the 102 genes with promoter hypermethylation, 51 genes were suggested to be upregulated in M2- MÏs. Similarly, out of 272 genes with differentially methylated promoters in T2DM macrophages 88 genes were suggested to be upregulated in M1-MÏs; whereas, out of 136 genes with promoter hypermethylation 60 genes were suggested to be upregulated in M2- MÏs. Thus a significant promoter hypomethylation of M1-MÏ and hypermethylation of M2-MÏ genes suggested the predominance of proinflammatory M1-MÏs in ischemic muscles of HL and T2DM compared to M2-MÏs in control mice. Conclusions: We found significant promoter hypomethylation of genes typical for proinflammatory M1-MÏs and hypermethylation of anti-inflammatory, proangiogenic M2-MÏ associated genes in HL and T2DM ischemic muscles. Epigenetic alterations skewing MÏ phenotype towards proinflammatory as opposed to anti-inflammatory, proangiogenic and tissue repair phenotype may contribute to impaired adaptive vascular growth in these pathological conditions. Macrophages and endothelial whole genome DNA methylation was performed in triplicates (Each sample was pooled from 3-4 mice) by RRBS Sequencing approach using Illumina HiSeq 2500. qRTâPCR validation was performed using TaqMan assays.
Project description:In this study, we mapped modification of lysine 4 and lysine 27 of histone H3 genome-wide in a series of mouse embryonic stem cells (mESCs) varying in DNA methylation levels based on knock-out and reconstitution of DNA methyltransferases (DNMTs). We extend previous studies showing cross-talk between DNA methylation and histone modifications by examining a breadth of histone modifications, causal relationships, and direct effects. Our data shows a causal regulation of H3K27me3 at gene promoters as well as H3K27ac and H3K27me3 at tissue-specific enhancers. We also identify isoform differences between DNMT family members. This study provides a comprehensive resource for the study of the complex interplay between DNA methylation and histone modification landscape. Reduced representation bisulfite sequencing (RRBS) performed on wild-type, Dnmt triple knock-out (Dnmt1/3a/3b; TKO), Dnmt double knock-out (Dnmt3a/3b; DKO), and respective reconstitution mouse embryonic stem cell lines.
Project description:At sites of inflammation, certain Foxp3+ Tregs have the ability to alter their phenotype and become pro-inflammatory helper/effector cells, without losing Foxp3 expression. We show that this functional reprogramming is controlled by the transcription factor Eos (Ikzf4), an obligate co-repressor for Foxp3. The ability to reprogram was restricted to a specific subset of Foxp3+ Tregs, arising as early as the thymus and identifiable by short half-life of Eos at rest, characteristic cell-surface markers (CD38+CD69+CD103NEG) and a distinct pattern of DNA methylation. Mice made selectively deficient in this subset of Eos-labile Tregs became markedly impaired in their ability to cross-present new antigens and prime CD8+ T cells. Downregulation of Eos and consequent Treg reprogramming was prevented by the immunoregulatory enzyme IDO, via activation of the aryl hydrocarbon receptor (AhR). Thus, the Foxp3+ lineage contains a committed subset of Tregs that are constitutively primed for conversion into biologically important helper cells. Cells from thymus or spleen were incubated for 1 hr with cycloheximide (CHX), then CD4+GFP+ Tregs were FACS-sorted into Eos-labile (CD38+CD103NEG) and Eos-stable (CD103+CD38NEG) subsets. Control CD4+GFPNEG (non Treg) cells were sorted from spleen. Genome-wide differential methylation analysis was performed using Reduced Representation Bisulfite Sequencing (RRBS). The genomic DNA from each sample was digested with the methylation-insensitive restriction enzyme MspI (restriction site, CCGG) and ligated to Illumina sequencing adaptors containing methylated cytosine residues. The ligated MspI fragments were size-selected, treated with sodium bisulfite, and amplified by PCR. The PCR products were purified and sequenced using Illumina HiSeq 2000 sequencer with a read length of 100bp.