Gene expression data from Zeb2WT, Zeb2KO, T-betWT and T-betKO effector CD8+ T cells during infection
Ontology highlight
ABSTRACT: ZEB2 is a multi-zinc-finger transcription factor known to play a significant role in early neurogenesis and in EMT-dependent tumor metastasis. While the function of ZEB2 in T lymphocytes is unknown, activity of the closely related family member ZEB1 has been implicated in lymphocyte development. Here, we find that ZEB2 expression is upregulated by activated T cells, specifically in the KLRG1hi effector CD8+ T cell subset. Loss of ZEB2 expression results in a significant loss of antigen-specific CD8+ T cells following primary and secondary infection with a severe impairment in the generation of the KLRG1hi effector-memory cell population. We show that ZEB2, which can bind DNA at tandem, consensus E-box sites, regulates gene expression of several E-protein targets and may directly repress CD127 and IL-2 in CD8+ T cells responding to infection. Furthermore, we find that T-bet binds to highly conserved T-box-sites in the ZEB2 gene and that T-bet and ZEB2 regulate similar gene-expression programs in effector T cells, suggesting that T-bet acts upstream and through regulation of ZEB2. Taken together, we place ZEB2 in a larger transcriptional network that is responsible for the balance between terminal differentiation and formation of memory CD8+ T cells. Zeb2WT, Zeb2KO, T-betWT and T-betKO effector CD8+ T cells were sorted into Trizol at day 6 of infection. Two or more replicates per sample were analyzed
Project description:ZEB2 is a multi-zinc-finger transcription factor known to play a significant role in early neurogenesis and in EMT-dependent tumor metastasis. While the function of ZEB2 in T lymphocytes is unknown, activity of the closely related family member ZEB1 has been implicated in lymphocyte development. Here, we find that ZEB2 expression is upregulated by activated T cells, specifically in the KLRG1hi effector CD8+ T cell subset. Loss of ZEB2 expression results in a significant loss of antigen-specific CD8+ T cells following primary and secondary infection with a severe impairment in the generation of the KLRG1hi effector-memory cell population. We show that ZEB2, which can bind DNA at tandem, consensus E-box sites, regulates gene expression of several E-protein targets and may directly repress CD127 and IL-2 in CD8+ T cells responding to infection. Furthermore, we find that T-bet binds to highly conserved T-box-sites in the ZEB2 gene and that T-bet and ZEB2 regulate similar gene-expression programs in effector T cells, suggesting that T-bet acts upstream and through regulation of ZEB2. Taken together, we place ZEB2 in a larger transcriptional network that is responsible for the balance between terminal differentiation and formation of memory CD8+ T cells.
Project description:T-bet is critical for cytotoxic T lymphocyte (CTL) differentiation, but it is unclear how it operates in a graded manner in the formation of both terminal effector and memory precursor cells during infection. We find that at high concentrations T-bet induced expression of Zeb2 mRNA, which then triggered CTLs to adopt terminally differentiated states. ZEB2 and T-bet cooperate to switch on a terminal CTL differentiation program, while simultaneously repressing genes necessary for central memory CTL development. Chromatin immunoprecipitation sequencing (ChIP-seq) showed that a large proportion of these genes were bound by T-bet, and this binding was altered by ZEB2 deficiency. Furthermore, T-bet overexpression could not fully bypass ZEB2 function. Thus, the coordinated actions of T-bet and ZEB2 outline a novel genetic pathway that forces commitment of CTLs to terminal differentiation, thereby restricting their memory cell potential. Splenocyte derived CD8+ T cells from C57BL/6 mice with either a wildtype (WT) (GzmB-Cre Zeb2+/+) or GzmB-Cre Zeb2-fl/fl (Zeb2-/-) backgrounds, following 8 days post infection with LCMV-Armstrong, were subsetted into KLRG1-hi/IL-7R-lo populations (terminal effectors, TE) or KLRG1-lo/IL-7R-hi (memory precursors, MP) populations. Four experimental groups, each with 3 samples, comprised of TE+WT, MP+WT, TE+ZEB2-/-, and MP+ZEB2-/-, were profiled for gene expression utilizing a polyA RNA prep and hybridized to the Illumina microarray platform IlluminaWG-v2.0.
Project description:During an immune response, CD8 T cells fall along a gradient of memory potential, but the regulators of these fate decsisions are not well understood. We utlized Id3-GFP and Id2-YFP reporter mice to elucidate the role of Id3 and Id2 during early CD8 T cell differentiation by gene expression. Id3-GFP hi Id2-YFP int or Id3-GFP lo Id2-YFP hi OT-I cells were sorted into trizol at day 6 of VSV-OVA infection and analyzed by microarray
Project description:T-bet is critical for cytotoxic T lymphocyte (CTL) differentiation, but it is unclear how it operates in a graded manner in the formation of both terminal effector and memory precursor cells during infection. We find that at high concentrations T-bet induced expression of Zeb2 mRNA, which then triggered CTLs to adopt terminally differentiated states. ZEB2 and T-bet cooperate to switch on a terminal CTL differentiation program, while simultaneously repressing genes necessary for central memory CTL development. Chromatin immunoprecipitation sequencing (ChIP-seq) showed that a large proportion of these genes were bound by T-bet, and this binding was altered by ZEB2 deficiency. Furthermore, T-bet overexpression could not fully bypass ZEB2 function. Thus, the coordinated actions of T-bet and ZEB2 outline a novel genetic pathway that forces commitment of CTLs to terminal differentiation, thereby restricting their memory cell potential.
Project description:CD8+ T cells play a crucial role in the clearance of intracellular pathogens through the generation of cytotoxic effector cells that eliminate infected cells and long-lived memory cells that provide enhanced protection against reinfection. We have previously shown that the inhibitor of E protein transcription factors, Id2, is necessary for accumulation of effector and memory CD8+ T cells during infection. Here we show that CD8+ T cells lacking Id2 did not generate a robust terminally-differentiated KLRG1hi effector population, but displayed a cell-surface phenotype and cytokine profile consistent with memory precursors, raising the question as to whether loss of Id2 impairs the differentiation and/or survival of effector-memory cells. We found that deletion of Bim rescued Id2-deficient CD8+ cell survival during infection. However, the dramatic reduction in KLRG1hi cells caused by loss of Id2 remained in the absence of Bim, such that Id2/Bim double-deficient cells form an exclusively KLRG1loCD127hi memory precursor population. Thus we describe a role for Id2 in both the survival and differentation of normal CD8+ effector and memory populations. Gene-expression analysis of Wild-type, Id2KO, Id2KOBimKO and BimKO effector CD8+ cells on day 6 of Listeria infection. 2 or more replicates per sample were analyzed.
Project description:Effector CD8+ T cells are crucial in adaptive immunity for effective protection against infectious pathogens. The regulatory mechanisms underlying CD8+ effector T cell development are incompletely understood. Here, we defined a critical role of mediator complex subunit 1 (Med1) in controlling effector CD8+ T cell differentiation and survival during acute infections. Mice with Med1 deletion in CD8+ T cells exhibited a significantly impaired effector cell expansion with large reduction of KLRG1+ terminally differentiated and Ly6c+ effector cell populations. Med1 deficiency led to enhanced cell apoptosis and expression of exhausted T cell associated inhibitory receptors (PD-1, Tim3, Lag3 and TIGHT). RNA-Seq analysis revealed the defects of T-bet and Zeb2 mediated transcriptional programs in effector differentiation. Overexpression of T-bet could rescue the Med1-deficient CD8+ effector T cell differentiation and survival. Mechanistically, transcription factor C/EBPβ promoted T-bet expression through interacting with Med1 in effector T cells. Collectively, our findings revealed a novel role of Med1 in regulating effector CD8+ T cell differentiation and survival during immune response.
Project description:Transcriptome analyses of naive, effector and memory CD8 TCRP1A lymphocytes expressing or not an active form of the transcription factor Stat5. TCRP1A CD8 T lymphocytes were activated by their cognate Ag for 72h to induce their differentiation in effector T cells (TCRP1A eTL 72h: 4 replicates S1, S2, S3, S4). In some samples, an active form of Stat5 was introduced (TCRP1A Stat5ca eTL 72h: 2 replicates S9, S10). These 72h activated T cells were either purified and analyzed directly (samples mentioned above) or injected in congeneic hosts and recovered more than 20 days later from the host spleen and lymph nodes: TCRP1A eTL >d20: 2 replicates– S30, S32; TCRP1A Stat5ca eTL >d20: 4 replicates S11, S12, S13, S14). Naive TCRP1A CD8 T lymphocytes (TCRP1A-naive: 4 replicates S33, S34, S35, S36) are included as controls. TCRP1A CD8 T lymphocytes were activated by anti-CD3/CD28. After 24h, an active form of Stat5 was introduced in activated cells. Culture was continued for another 48h to induce their differentiation in effector T cells. These 72h activated T cells were either directly injected in congeneic hosts and recovered more than 14 days later from the host spleen and lymph nodes: T-BetKO Stat5ca >d14: 3 replicates S39, S40, S41.
Project description:CD8 T cells normally differentiate from resting naïve T cells into function effector and then memory CD8 T cells following acute infections. During chronic viral infections, however, virus-specific CD8 T cells often become exhausted. We used microarrays to examine the gene expression differences between naive, effector, memory and exhausted virus-specific CD8 T cells following lymphocytic choriomeningitis virus infection. Experiment Overall Design: Three or four independent samples were sorted by flow cytometry for each cell type (naive, effector, memory and exhausted) virus-specific CD8 T cells. RNA was extracted and hybridized to Affymetrix microarrays.
Project description:Understanding the response of memory CD8 T cells to persistent antigen re-stimulation and the role of CD4 T cell help is critical to the design of successful vaccines for chronic diseases. However, studies comparing the protective abilities and qualities of memory and naïve cells have been mostly performed in acute infections, and little is known about their roles during chronic infections. Herein, we show that memory cells dominate over naïve cells and are protective when present in large enough numbers to quickly reduce infection. In contrast, when infection is not rapidly reduced, memory cells are quickly lost, unlike naïve cells. This loss of memory cells is due to (i) an early block in cell proliferation, (ii) selective regulation by the inhibitory receptor 2B4, and (iii) increased reliance on CD4 T cell help. These findings have important implications towards the design of T cell vaccines against chronic infections and tumors. 16 samples are analyzed: 3 replicates of secondary effector CD8 P14 T cells at day 8 post-acute lymphocytic choriomeningitis virus (LCMV) infection; 4 replicates of secondary effector CD8 P14 T cells at day 8 post-chronic LCMV infection; 4 replicates of primary effector CD8 P14 T cells at day 8 post-acute LCMV infection; and 5 replicates of primary effector CD8 P14 T cells at day 8 post-chronic LCMV infection.
Project description:DNMT3a is a de novo DNA methyltransferase expressed robustly after T cell activation that regulates plasticity of CD4+ T cell cytokine expression. Here we show that DNMT3a is critical for directing early CD8+ T cell effector and memory fate decisions. While effector function of DNMT3a knockout T cells is normal, they develop more memory precursor and fewer terminal effector cells in a T cell intrinsic manner compared to wild-type animals. Rather than increasing plasticity of differentiated effector CD8+ T cells, loss of DNMT3a biases differentiation of early effector cells into memory precursor cells. This is attributed in part to ineffective repression of Tcf1 expression in knockout T cells, as DNMT3a localizes to the Tcf7 promoter and catalyzes its de novo methylation in early effector WT CD8+ T cells. This data identifies DNMT3a as a crucial regulator of CD8+ early effector cell differentiation and effector versus memory fate decisions. Examination of global genomic DNA methylation by MBD-seq in naïve CD8 T cells and CD8 T cells 8 days post Vaccinia-Ova infection, comparing OT1 TCR-Tg CD8 T cells isolated from WT and T cell conditional DNMT3a KO mice.