Muscle transcriptome analysis of the large yellow croaker under fasting treatment by RNA-seq
Ontology highlight
ABSTRACT: We sequenced mRNA from 2 muscle samples of the large yellow croaker (Larimichthys crocea) taken from normal feeding fish and fasting stress treatment fish, respectively, to investigate the transcriptome and comparative expression profiles of the large yellow croaker muscle undergoing fasting. Muscle mRNA profiles of control group (M7C) and 21-day fasting group (M7E) were generated by RNA-seq using Illumina HiSeq 2500.
Project description:RNA sequencing of human leukemia The goals of this project are to obtain a comprehensive study of mutations and gene expression in human acute myeloid leukemia (AML). Methods: AML cells were thawed. DNA and RNA (polyA) was extracted and sequences were obtained with an illumina HiSeq 2000 sequencer. Results are pending.
Project description:Background: Exosomes and extracellular vesicles (EVs) are increasingly recognized as important sources of biomarkers for disease study and diagnosis. Results: A synthetic peptide, Vn96, allows for capture of EVs from biological fluids using basic laboratory equipment. Conclusion: The Vn96-captured EVs are qualitatively equivalent or superior to exosomes isolated by ultracentrifugation. Significance: The Vn96 peptide provides an effective affinity-capture method for the isolation of EVs from biological fluids. In order to compare different methods of exosome purification, we compared RNA content of exosomes purified with each method. We used two different breast cancer cell lines MCF7 and MDA-MB-231. We processed data in order to identify large RNAs as well as small RNA by using different methods for the alignment
Project description:Trisomy 21 (T21) is the most frequent genetic cause of cognitive impairment. To assess the perturbations of gene expression in T21, and to eliminate the noise of the genomic variability, we studied the transcriptome of fetal fibroblasts from a pair of monozygotic twins discordant for T21. Here we show that the differential expression between the twins is organized in domains along all chromosomes that are either up- or downregulated. These gene expression dysregulation domains (GEDDs) can be defined by the expression level of their gene content, and are well conserved in induced pluripotent stem cells derived from the twinsM-bM-^@M-^Y fibroblasts. Comparison of the transcriptome of the Ts65Dn mouse model of DS and wild-type, also showed GEDDs along the mouse chromosomes that were syntenic in human. The GEDDs correlate with the lamina-associated (LADs) and replication domains of mammalian cells. The overall LADs position was not altered in trisomic cells. However, the H3K4me3 profile of the trisomic fibroblasts was modified and accurately followed the GEDD pattern. These results suggest that the nuclear compartments of trisomic cells undergo modifications of the chromatin environment influencing the overall transcriptome and that GEDDs may therefore contribute to some T21 phenotypes. mRNA-Seq profiling in Down syndrome: fibroblasts derived from a pair of monozygotic twins discordant for trisomy 21 (4 replicates), iPS cells from the same pair of discordant twins, fibroblasts from a pair of normal monozygotic twins, fibroblasts from 16 unrelated individuals (8 trisomic and 8 euploid controls), fibroblasts from the Ts65Dn mouse model of Down syndrome (1 trisomic mouse and 1 control wt).
Project description:Vibrio parahaemolyticus an emerging pathogen that is a causative agent of foodborne gastroenteritis when raw or undercooked seafood is consumed. Previous microarray data using a Vibrio parahaemolyticus RIMD2210633 chip has shown the master quorum-sensing regulator OpaR controls virulence, type III and type VI secretion systems, and flagellar and capsule production genes. In a parallel study, RNA-Seq was used to comparatively study the transcriptome changes of wild type Vibrio parahaemolyticus BB22 and a ΔopaR strain directly. Differences in mRNA expression were analyzed using next generation Illumina sequencing and bioinformatics techniques to align and count reads. A comparison with the previous microarray data showed good correlation between the shared genes. The RNA-Seq offered an insight into control of genes specific to the Vibrio parahaemolyticus BB22 strain as well as a new look at the sRNAs that are expressed. Eleven transcriptional regulators with greater than 4 fold regulation in the previous microarray study and 2 fold regulation in the RNA-Seq analysis, were chosen to validate the data using qRT-PCR and further characterized with electrophoretic mobility shift assays (EMSAs) to determine if they are direct targets of OpaR. The transcription factors chosen play key roles in virulence, surface motility, cell to cell interactions, and cell surface characteristics. One small RNA was identified in the RNA-Seq data to be quorum-sensing controlled and unidentified by other programs. The RNA-Seq data has aided in understanding and elucidating the hierarchy of quorum-sensing control of OpaR in Vibrio parahaemolyticus. The wild type Vibrio parahaemolyticus BB22 strain LM5312 and an opaR deletion strain LM5674 were analyzed for mRNA expression using RNA-Seq.
Project description:RNA sequencing of human leukemia The goals of this project are to obtain a comprehensive study of mutations and gene expression in human acute myeloid leukemia (AML). Methods: AML cells were thawed. DNA and RNA (polyA) was extracted and sequences were obtained with an illumina HiSeq 2000 sequencer. Results are pending.
Project description:Successful establishment and maintenance of pregnancy can be attained only through optimum conceptus-maternal cross talk. Despite significant progress in our understanding of the temporal changes in the transcriptome of the uterine endometrium, we have only a rudimentary knowledge of the genes and pathways governing growth and development of the bovine conceptus. In particular, very little information exists for the posthatchingembryo and elongating conceptus. This period of development is arguably the most important, as approximately 40% of all embryonic loss occurs between Days 8 and 17 of pregnancy in cattle. Here, we describe the global transcriptome profile of the bovine conceptus at five key stages of its pre- and peri-implantation growth (Days 7, 10, 13, 16, and 19) using state-of-the-art RNA sequencing techniques. More than 287 million reads were generated at the five stages, and more than 22?700 unique transcripts were detected. Analysis of variance followed by self-organizing maps identified differentially regulated (P < 0.05) genes organized in nine gene clusters forming a sequential transcript dynamics across these developmental stages. Of particular interest, genes in clusters 3 (n = 236) and 6 (n = 1409) were significantly up-regulated on Days 16 and 19, suggesting a role in maternal recognition and initiation of implantation. This transcriptome analysis of the bovine conceptus will provide a blueprint of the dynamic changes in gene expression occurring during maternal recognition and implantation and will complement existing knowledge of the temporal changes in the endometrial transcriptome, thus facilitating a better understanding of conceptus-maternal cross talk during the peri-implantation period of pregnancy. mRNA-seq study of bovine conceptuses at 5 stages of development (days 7, 10, 13, 16 and 19) post fertilization.
Project description:The goal of the study was to identify genes that are directly or indirectly coregulated by the AhR pathway in primary human AML cells. Patient AML cells were treated for 16 hours with the two indirubin derivatives 6-bromoindirubin-3'oxime (BIO), 1-Methyl-6-bromoindirubin-3'oxime (MeBIO), the AHR-antagonist SR1 (StemReginin1), combinations of BIO+SR1 and MeBIO+SR1 or DMSO alone at indicated concentrations prior to RNA extraction for sequencing. RNA-Seq performed on 5 primary AML samples fresh (t0) and after exposure to AhR-agonists (2), -antagonist (1), and DMSO Contributor: Leucegene Project, IRIC
Project description:As regulators of protein degradation, proteasomes regulate practically all cellular functions. It is therefore logical to assume that replacement of the constitutive proteasome (CP) by its IFN- inducible homolog immunoproteasome (IP) could have far reaching effects on cell function. Accordingly, recent studies have revealed important roles for IPs in immune cells beyond MHC I-peptide processing. Moreover, the expression of IPs in non-immune cells from non-inflamed tissues suggests that the involvement of IPs is not limited to the immune system. We demonstrate here that IP-deficiency affects the transcription of 8104 genes in maturing dendritic cells (DCs). This occurs mainly through non-redundant regulation of key immune-related transcription factors by CPs and IPs. Additionally, IP-deficiency decreases DC's efficiency to activate CD8+ T cells in vivo. Our study reveals that the broad cellular roles of IPs could rely on transcription regulation and, more importantly, illustrates how IP-deficiency could generate MHC I-peptide processing-independent phenotypes. Examination of the transcriptome of WT and immunoproteasome-deficient cells at 4 different time points of dendritic cell maturation, in 4 experimental replicates (total of 32 samples).
Project description:Promiscuous gene expression (pGE) of numerous self-antigens in thymic epithelial cells (TEC) enables the elimination of self-reactive T cells. The autoimmune regulator (Aire) is the only known molecular determinant driving pGE in the thymus but the existence of Aire-independent mechanisms has been inferred. Here, we analyzed the poly(A)+ transcriptome of TEC populations by RNA-sequencing (RNA-seq) in order to reveal differential features of Aire-induced vs. –independent pGE. We report an unanticipated effect of Aire deletion on the proliferation and differentiation of cortical TEC. Moreover, the RNA-seq data reveal the breath of Aire-induced and –independent pGE in medullary TEC (mTEC) subsets and the extent of thymic peripheral tissue representation. The results suggest that Aire-induced promiscuously expressed transcripts affect several functions with far reaching biological consequences in mTEC. High-throughput characterization of TEC transcriptomes will enable progress in understanding TEC biology and the establishment of self-tolerance. The mRNA profiles of cTEC, mTEClo and mTEChi from 6-8 week-old wild type (WT) and Aire-/- (KO) mice were generated by RNA-sequencing using Illumina HiSeq2000.