Transcription profiling of horse equine Laminitis samples vs Control.
Ontology highlight
ABSTRACT: Equine lameller tissues were collected to compare normal vs laminitis generated differences in transcriptom level. Experiment Overall Design: Three Laminitis generated vs three normal Equine hoof tissues were subjected to comparison analysis in transcriptom level by using the Affymetrix Bovine GeneChip. Experiment Overall Design: The reasons for Bovine chip were; 1) Genetic similarity to Equine. Experiment Overall Design: 2) More transcriptom was search at that Affymetrix platform comparing the Equine GeneChip at the time of the study.
Project description:Equine lameller tissues were collected to compare normal vs laminitis generated differences in transcriptom level. Keywords: Laminitis, Equine, Diseased foot
Project description:An important event in the pathogenesis of heart failure is the development of pathological cardiac hypertrophy. In cultured cardiac cardiomyocytes, the transcription factor Gata4 is required for agonist-induced cardiomyocyte hypertrophy. We hypothesized that in the intact organism Gata4 is an important regulator of postnatal heart function and of the hypertrophic response of the heart to pathological stress. To test this hypothesis, we studied mice heterozygous for deletion of the second exon of Gata4 (G4D). At baseline, G4D mice had mild systolic and diastolic dysfunction associated with reduced heart weight and decreased cardiomyocyte number. After transverse aortic constriction (TAC), G4D mice developed overt heart failure and eccentric cardiac hypertrophy, associated with significantly increased fibrosis and cardiomyocyte apoptosis. Inhibition of apoptosis by overexpression of the insulin-like growth factor 1 receptor prevented TAC-induced heart failure in G4D mice. Unlike WT-TAC controls, G4D-TAC cardiomyocytes hypertrophied by increasing in length more than width. Gene expression profiling revealed upregulation of genes associated with apoptosis and fibrosis, including members of the TGF? pathway. Our data demonstrate that Gata4 is essential for cardiac function in the postnatal heart. After pressure overload, Gata4 regulates the pattern of cardiomyocyte hypertrophy and protects the heart from load-induced failure. Experiment Overall Design: We reasoned that if Gata4 was a crucial regulator of pathways necessary for cardiac hypertrophy, then modest reductions of Gata4 activity should result in an observable cardiac phenotype. To test this hypothesis, we used gene targeted mice that express reduced levels of Gata4. We characterized these mice at baseline and after pressure Experiment Overall Design: overload.
Project description:By screening for genes possessing canonical X-box sequences in promoters of three Caenorhabditis species, namely C. elegans, C. briggsae and C. remanei, we identified 93 genes (including known X-box regulated genes) that encode putative components of ciliated neurons in C. elegans and are subject to the same regulatory control. For many of these genes, restricted anatomical expression in ciliated cells was confirmed, and control of transcription by the ciliogenic DAF-19 RFX transcription factor was demonstrated by comparative transcriptional profiling of daf-19(+) and daf-19(-) animals. Experiment Overall Design: There 4 samples.
Project description:Purpose: To identify the molecular phenotype of endothelial cells (EC) isolated from the unique vasculature of the corpus cavernosum. Methods: Human EC derived from corpus cavernosum (HCCEC, n=5), coronary artery (HCAEC, n=4) and umbilical vein (HUVEC, n=3) were grown in culture and mRNA transcripts quantified by Affymetrix GeneChip microarrays. Genes differentially expressed across samples were partitioned around medoids to identify genes with highest expression in HCCEC. Several genes were verified by real-time PCR. The role of claudin 11 (CLDN11) in endothelial cell barrier function was examined by in vitro transendothelial electrical resistance assay. Results: Unsupervised hierarchical clustering of samples using all expressed genes yielded discrete groupings of EC lines according to their in vivo source of origin. 190 genes/transcripts were highly expressed only in cavernosal HCCEC. Gene Ontology classification indicated cavernosal enrichment in genes related to cell adhesion, extracellular matrix (ECM), pattern specification and organogenesis. KEGG pathway analysis showed high expression of gene relating to ECM-receptor interaction, focal adhesions, and cytokine-cytokine receptor interaction. Real-time PCR confirmed expression differences in cadherins 2 and 11, CLDN11, desmoplakin and versican. CLDN11, a component of tight junctions not previously described in ECs, was highly expressed only in HCCEC and its knockdown by siRNA significantly reduced transendothelial electrical resistance in HCCEC. Conclusions: HCCECs displayed expression of transcripts encoding matrix and adhesion proteins that regulate structural and functional characteristics of blood vessels. High expression of the tight junction protein CLDN11 is novel in endothelial cells and contributes to barrier function of cultured HCCEC. Experiment Overall Design: Endothelial cells were grown on 2% gelatin type B (Sigma)/15% fetal bovine serum (Gibco) coated tissue culture dishes in Medium 199 (Gibco) supplemented with 20% FBS, EGM-2MV (Clonetics), L-glutamine and 10,000u/ml Penicillin, 10,000u/ml Streptomycin, and 25mg/ml Fungizone. All cells were grown in a humidified incubator at 37 oC and 5% CO2 with media changed every 2-3 days. Total RNA isolation for the arrays was performed using Qiagen RNeasy mini columns according to manufacturers instructions (RNeasy Mini Handbook). Briefly, cells grown in T-75 culture flasks were trypsinized with 0.25% trypsin/1 mM EDTA (Gibco) between the third and seventh passages and centrifuged to pellet the cells. Next, cells were disrupted and homogenized in RNeasy lysis buffer using a 1ml syringe with 21-gauge needle. Ethanol was added to allow binding of RNA to the silica-gel-based membrane of the mini column. Several washes as well as on-column DNase treatment were used to ensure that contaminants and DNA were effectively removed from the column. Finally, RNA was eluted in approximately 30ul of RNase free water. Experiment Overall Design: Biotin labeled target cRNA was prepared according to the Affymetrix eukaryotic target labeling protocol starting with 5ug total RNA for each sample. Each target was hybridized to an Affymetrix Human U133A GeneChip. GeneChips were washed and scanned at the University of Washingtonâs Center for Expression Arrays according to procedures developed by the manufacturer.
Project description:Sequencing of equine mRNA (RNA-seq) identified 428 putative transcripts which do not map to any previously annotated or predicted horse genes. Most of these encode the equine homologs of known protein-coding genes described in other species, yet the potential exists to identify novel and perhaps equine-specific gene structures. A set of 36 transcripts were prioritized for further study by filtering for levels of expression (depth of RNA-seq read coverage), distance from annotated features in the equine genome, the number of putative exons, and patterns of gene expression between tissues. From these, four were selected for further investigation based on predicted open reading frames of greater than or equal to 50 amino acids and lack of detectable homology to known genes across species. Sanger sequencing of RT-PCR amplicons from additional equine samples confirmed expression and structural annotation of each transcript. Functional predictions were made by conserved domain searches. A single transcript, expressed in the cerebellum, contains a putative kruppel-associated box (KRAB) domain, suggesting a potential function associated with zinc finger proteins and transcriptional regulation. Overall levels of conserved synteny and sequence conservation across a 1MB region surrounding each transcript were approximately 73% compared to the human, canine, and bovine genomes; however, the four loci display some areas of low conservation and sequence inversion in regions that immediately flank these previously unannotated equine transcripts. Taken together, the evidence suggests that these four transcripts are likely to be equine-specific.
Project description:Bovine Papillomavirus type 1 (BPV-1) and less commonly BPV-2 are associated with the pathogenesis of common equine skin tumours termed sarcoids. In an attempt to understand the mechanisms by which BPV-1 induces sarcoids, we used gene expression profiling as a screening tool to identify candidates genes implicated in disease pathogenesis. Gene expression profiles of equine fibroblasts transformed by BPV-1 either experimentally or from explanted tumours were compared with control equine fibroblasts to identify genes associated with expression of BPV-1.