ABSTRACT: Gene-profiling of Tregs across inbred strains. There is a wide inter-individual range in the frequency of FoxP3+ Treg cells, but little is known about the underlying genetic or epigenetic mechanisms. We explored this issue accross inbred strains of mice. During this study, we established the gene expression profiles of Treg cells from the various inbred strains of mice. For each inbred strain of mice, CD4+ TCRb+ CD25hi Treg cells (50k) from 9w old male (Jackson laboratory) were double sorted into Trizol. For BM Treg, cells were triple-sorted. Top 50% among CD25high cells were selected to ensure high Foxp3+ purity (over 99%). 2 biological replicates per condition. RNA was amplified, labeled and hybridized to Affymetrix Mouse Gene 1.0 ST Arrays (Expression Analysis).
Project description:Gene-profiling of Tregs across inbred strains. There is a wide inter-individual range in the frequency of FoxP3+ Treg cells, but little is known about the underlying genetic or epigenetic mechanisms. We explored this issue accross inbred strains of mice. During this study, we established the gene expression profiles of Treg cells from the various inbred strains of mice.
Project description:During development, thymocytes bearing a moderately self-reactive T cell receptor (TCR) can be selected to become regulatory T (Treg) cells. Several observations suggest that also in the periphery mature Treg cells continuously receive self-reactive TCR signals. However, the importance of this inherent autoreactivity for Treg cell biology remains poorly defined. To address this open question, we genetically ablated the TCR of mature Treg cells in vivo. These experiments revealed that TCR-induced Treg lineage-defining FoxP3 expression and gene hypomethylation were uncoupled from TCR input in mature Treg cells. However, Treg cell homeostasis, cell-type-specific gene expression and suppressive function critically depend on continuous triggering of their TCR. TCRpos (FoxP3+ CD4+ CD25high cells from CM-NM-1F/F FoxP3 I eGFP mice) and TCRneg (FoxP3+ TCRM-bM-^@M-^S CD4+ CD25high cells from Mx-Cre CM-NM-1F/F FoxP3 I eGFP mice) Treg cells were FACS sorted 6 weeks after poly(I:C) injection. Cells from 3-5 mice were pooled for sorting, and 4 replicates for the controls (TCRpos) as well as 5 replicates for the Mx-Cre (TCRneg) mice were generated. mRNA from 3-5 x 105 cells was purified with a RNeasy Micro kit (Qiagen), amplified, labeled and hybridized to Affymetrix M430 V2 microarrays
Project description:The transcription factor FoxP3 partakes dominantly in the specification and function of FoxP3+ CD4+ T regulatory cells (Tregs), but is neither strictly necessary nor sufficient to determine the characteristic Treg transcriptional signature. Computational network inference and experimental testing assessed the contribution of several other transcription factors (TFs). Enforced expression of Helios or Xbp1 elicited specific signatures, but Eos, Irf4, Satb1, Lef1 and Gata1 elicited exactly the same outcome, synergizing with FoxP3 to activate most of the Treg signature, including key TFs, and enhancing FoxP3 occupancy at its genomic targets. Conversely, the Treg signature was robust to inactivation of any single cofactor. A redundant genetic switch thus locks-in the Treg phenotype, a model which accounts for several aspects of Treg physiology, differentiation and stability. To study the impact of deficiency of candidate FoxP3 cofactors (Xbp1, Eos, Gata1) on the expression of the Treg transcriptional signature, gene expression profiles were generated from purified splenic CD4+CD25hi Tregs of these mutant or knockout mice and their wildtype littermates.
Project description:Analysis of the transcriptional correlates of FOXP3 expression in suppressive and non-suppressive primary human Treg cell clones. Individual CD4+CD25High or Cd4+CD25- T cells were isolated from human PBMCs and expanded in vitro. After 3 weeks of expansion, individual clones were analysed for FOXP3 expression and in vitro suppressive activity against freshly sorted allogeneic effector T cells. This study analyses the total RNA isolated from FOXP3+ clones with suppressive potency to their non-suppressive counterparts. The resutls of this study should provide insights into the molecular pathways linking FOXP3 expression to distinct aspects of Treg phenotype and function.
Project description:Analysis of the transcriptional correlates of FOXP3 expression in suppressive and non-suppressive primary human Treg cell clones. Individual CD4+CD25High or Cd4+CD25- T cells were isolated from human PBMCs and expanded in vitro. After 3 weeks of expansion, individual clones were analysed for FOXP3 expression and in vitro suppressive activity against freshly sorted allogeneic effector T cells. This study analyses the total RNA isolated from FOXP3+ clones with suppressive potency to their non-suppressive counterparts. The resutls of this study should provide insights into the molecular pathways linking FOXP3 expression to distinct aspects of Treg phenotype and function. Total RNA obtained from individual clones of primary human regulatory and effector CD4+T cells.
Project description:In this screen we compared cDNA from rTreg (AICD resistent TReg cells) against cDNA derived from all CD4+CD25hi Treg for further molecular characterization of rTreg Experiment Overall Design: Single comparison of rTReg vs. TReg. We pooled rTreg-cDNA derived from FACS-sorted CD4+CD25hi Treg of eight healthy blood donors and performed gene chip microarray analysis.
Project description:The transcription factor FoxP3 partakes dominantly in the specification and function of FoxP3+ CD4+ T regulatory cells (Tregs), but is neither strictly necessary nor sufficient to determine the characteristic Treg transcriptional signature. Computational network inference and experimental testing assessed the contribution of several other transcription factors (TFs). Enforced expression of Helios or Xbp1 elicited specific signatures, but Eos, Irf4, Satb1, Lef1 and Gata1 elicited exactly the same outcome, synergizing with FoxP3 to activate most of the Treg signature, including key TFs, and enhancing FoxP3 occupancy at its genomic targets. Conversely, the Treg signature was robust to inactivation of any single cofactor. A redundant genetic switch thus locks-in the Treg phenotype, a model which accounts for several aspects of Treg physiology, differentiation and stability. To study the impact of FOXP3 alone or together with GATA1 on the expression of the Treg transcriptional signature, we sorted and profiled matched bins of FOXP3-transduced cells bearing various levels of FOXP3, alone or co-transduced with GATA1, chosen as a representative of the quintet factors.
Project description:The transcription factor FoxP3 partakes dominantly in the specification and function of FoxP3+ CD4+ T regulatory cells (Tregs), but is neither strictly necessary nor sufficient to determine the characteristic Treg transcriptional signature. Computational network inference and experimental testing assessed the contribution of several other transcription factors (TFs). Enforced expression of Helios or Xbp1 elicited specific signatures, but Eos, Irf4, Satb1, Lef1 and Gata1 elicited exactly the same outcome, synergizing with FoxP3 to activate most of the Treg signature, including key TFs, and enhancing FoxP3 occupancy at its genomic targets. Conversely, the Treg signature was robust to inactivation of any single cofactor. A redundant genetic switch thus locks-in the Treg phenotype, a model which accounts for several aspects of Treg physiology, differentiation and stability. To study the impact of FoxP3 and its candidate cofactors (Eos, Gata1, Helios, Irf4, Lef1, Satb1, Xbp1) on the expression of the Treg transcriptional signature, CD4+ conventional T cells (Tconv) activated with anti-CD3+CD28 beads were retrovirally transduced with cDNAs encoding FOXP3, candidate TFs, or a combination of FOXP3 and candidate TFs. After 3 days in culture, the transduced cells were sorted into Trizol, and RNA was purified, labeled and hybridized to Affymetrix arrays.
Project description:Gene expression profiling of Bone Marrow FoxP3+ Treg cells. Glatman Zaretsky et al. revealed an unexpected role for Tregs in plasma cell biology. Here we determined the gene-expression profile of this new subset of FoxP3+ Treg cell, which express high levels of Treg effector molecules, similar to other non-lymphoid tissue Tregs. Gene-profiling of BM Tregs. Bone marrow Treg cells (30k) (gfp+CD25hiCD4+TCRβ+) (dump negative: CD19-CD8α-TCRγδ-CD11b-CD11c-NK1.1-Gr-1-Ter-119-) were triple-sorted from pools of two to three reporter mice (C57BL/6 Foxp3-IRES-gfp, 9 week-old males) into trizol per ImmGen SOP. RNA was amplified, labeled and hybridized to Affymetrix Mouse Gene 1.0 ST Arrays (Expression Analysis)
Project description:The colonic lamina propria contains a distinct population of Foxp3+ T regulatory cells (Tregs) that modulate responses to commensal microbes. Analysis of gene expression revealed that the transcriptome of colonic Tregs is distinct from splenic and other tissue Tregs. Rorγ and Helios in colonic Tregs mark distinct populations: Rorγ+Helios- or Rorγ-Helios+ Tregs. We uncovered an unanticipated role for Rorγ, a transcription factor generally considered to be antagonistic to Foxp3. Rorγ in colonic Tregs accounts for a small but specific part of the colon-specific Treg signature. (1) Total colonic and splenic Foxp3+ Treg comparison: Lymphocytes were isolated from colonic lamina propria and spleens of Foxp3-ires-GFP mice, where GFP reports Foxp3 expression. TCRb+CD4+GFP+ cells were double sorted into Trizol. (2) Colonic Rorγ+ and Rorγ- Treg comparison: Foxp3-ires-Thy1.1 reporter mice were crossed to Rorc-GFP reporter mice to generate mice that report both Foxp3 and Rorγ expression. Rorγ+Foxp3+ Tregs (TCRb+CD4+Thy1.1+GFP+) and Rorγ-Foxp3+ Tregs (TCRb+CD4+Thy1.1+GFP-) from colonic lamina propria were double sorted into Trizol.To reduce variability and increase cell number, cells from multiple mice were pooled for sorting and at least three replicates were generated for all groups. RNA from 1.5-3.0 x104 cells was amplified, labeled and hybridized to Affymetrix Mouse Gene 1.0 ST Arrays.