Gene expression profile analysis in myelodysplastic syndromes
Ontology highlight
ABSTRACT: The pathogenesis-related signaling pathways in MDS could be screened using high throughput bioinformatics analysis based on the gene expression profile network. Here, we tried to identify the mRNAs-regulated pathways through a mRNA microarray in CD34+ cells from MDS patients. Gene expression profile analysis was performed in 12 MDS patients and 6 normal controls using GeneChip® PrimeView� Human Gene Expression Array, and diffirential genes were identified.
Project description:The miRNA-related signaling pathways in MDS could be screened using high throughput bioinformatics analysis based on the miRNAs expression profile network. Here, we tried to identify the miRNAs-regulated pathways through a miRNA microarray in CD34+ cells from MDS patients. miRNA expression profile analysis was performed in 12 MDS patients and 6 normal controls using GeneChip® miRNA 3.0 Array, and diffirential miRNAs were identified.
Project description:The progressive mechanism of myelodysplastic syndrome (MDS) remains unknown. We report that ROBO1 and ROBO2 are identified as novel progression-related somatic mutations using whole-exome and targeted sequencing in six of 16 (37.5%) paired MDS patients undergoing disease progression. To investigated the effect of ROBO1 or ROBO2 on ROBO1/2 CN number and LOH, we employed a Cytosan 750K chip to analyze the copy-number variations (CNVs) and loss of heterogeneity (LOH) in MDS patients with ROBO1&2 mutations. Copy number and LOH analysis of Affymetrix CytoScan 750K array was performed for 14 MDS patients with ROBO1 or ROBO2 mutations
Project description:Control of oxidative stress in the bone marrow (BM) is key for maintaining the balance between self-renewal, proliferation, and differentiation of hematopoietic cells. Breakdown of this regulation can lead to diseases characterized by BM failure such as the myelodysplastic syndromes (MDS). To better understand the role of oxidative stress in MDS development, we compared protein carbonylation as an oxidative stress marker in BM of patients with MDS and control subjects, and also patients with MDS under treatment with the iron chelator deferasirox.
Project description:Myelodysplastic syndromes (MDS) are a heterogenous group of hematopoietic stem cell disorders characterized by dysplastic blood cell formation and peripheral blood cytopenias. Up to 30% of patients with MDS will progress to a highly chemotherapy-resistant secondary acute myeloid leukemia (sAML). We identified mutations in U2AF1 in MDS patients and patients with U2AF1 mutations are at an increased risk of developing sAML. We identified mutations in U2AF1 in patients with MDS and hypothesized that U2AF1 mutations may represent a novel mechanism that could alter gene expression in MDS. To elucidate gene expression changes associated with U2AF1 mutations, we analyzed the global mRNA expression profile obtained from bone marrow CD34+ cells purified from 5 MDS patients with a U2AF1 mutation, 10 MDS patients without a mutation, and 4 normal donors.
Project description:The miRNA-related signaling pathways in MDS could be screened using high throughput bioinformatics analysis based on the miRNAs expression profile network. Here, we tried to identify the miRNAs-regulated pathways through a miRNA microarray in CD34+ cells from MDS patients.
Project description:The pathogenesis-related signaling pathways in MDS could be screened using high throughput bioinformatics analysis based on the gene expression profile network. Here, we tried to identify the mRNAs-regulated pathways through a mRNA microarray in CD34+ cells from MDS patients.
Project description:We investigated the spectra of circulating miRNAs in plasma of myelodysplastic syndromes (MDS) patients. Peripheral blood plasma from MDS patients with different risk scores was used for Agilent miRNA expression microarray analysis to define miRNA profile and to find miRNAs with discriminatory levels for lower risk and higher risk MDS. Results were further validated using droplet digital PCR on a larger cohort, enabling absolute quantification of plasma miRNAs and defining miRNAs with prognostic value for the disease. We analyzed expression profile of circulating miRNAs in plasma from 21 individuals: 7 controls and 14 MDS patients.
Project description:We report the biological function of Srsf2 in hematopoiesis in conditional knockout mouse models. Ablation of Srsf2 in the hematopoietic lineage caused embryonic lethality, and Srsf2-deficient fetal liver cells showed significantly enhanced apoptosis and decreased hematopoietic stem/progenitor cells. Induced ablation of Srsf2 in adult Mx1Cre/ Srsf2flox/flox mice upon polyinosinic:polycytidylic acid injection demonstrated a significant decrease in lineage-/Sca+/cKit+ cells in bone marrow. To reveal the functional impact of MDS-associated mutations in SRSF2, we profiled global splicing responses on an MDS-L cell line using RASL-seq, and found that the P95H missense mutation and P95 to R102 in-frame 8 amino-acid deletion caused significant changes in alternative splicing. The affected genes were enriched in cancer development and apoptosis. These findings suggest that intact Srsf2 is essential for the functional integrity of the hematopoietic system, and its mutations are likely key driver events to MDS. MDS-L cells (in triplicate) were transfected by srsf2 shRNA only, or pTRIPZ vectors containing both srsf2 shRNA and srsf2 mutants cDNA including P95H and P95 8 amino acid deletion as well as wild-type construct, followed by Dox induction. Total RNAs were extracted and been analyzed by RASL-seq.
Project description:Genome-wide expression and methylation profiling identifies novel targets with aberrant hypermethylation and reduced expression in low-risk myelodysplastic syndromes (MDSs). Gene expression profiling signatures may be used to classify the subtypes of Myelodysplastic syndrome (MDS) patients. However, there are few reports on the global methylation status in MDS. The integration of genome-wide epigenetic regulatory marks with gene expression levels would provide additional information regarding the biological differences between MDS and healthy controls. Gene expression and methylation status were measured using high-density microarrays. A total of 552 differentially methylated CpG loci were identified as being present in low-risk MDS; hypermethylated genes were more frequent than hypomethylated genes. In addition, mRNA expression profiling identified 1005 genes that significantly differed between low-risk MDS and the control group. Integrative analysis of the epigenetic and expression profiles revealed that 66.7% of the hypermethylated genes were underexpressed in low-risk MDS cases. Gene network analysis revealed molecular mechanisms associated with the low-risk MDS group, including altered apoptosis pathways. The two key apoptotic genes BCL2 and ETS1 were identified as silenced genes. In addition, the immune response and micro RNA biogenesis were affected by the hypermethylation and underexpression of IL27RA and DICER1. Our integrative analysis revealed that aberrant epigenetic regulation is a hallmark of low-risk MDS patients and could have a central role in these diseases. Low-risk MDS patients and age-matched controls without haematological malignancies were included in the study. Mononuclear cells were isolated from bone marrow samples of low-risk MDS patients and controls by density gradient (Ficoll). A cohort of 18 patients with low-risk MDS and seven controls were included in a simultaneous integrative study of methylation (using Methylated CpG Island Amplification and Microarrays, MCAM) and expression (using Affymetrix microarrays HG-U133 Plus 2), while the whole series was used as a control group of expression data.
Project description:In a two-stage study we investigated levels of Immunoglobulin G (IgG) reactivity in plasma from Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML) post MDS patients (59 and 16 cases respectively) as compared to healthy cohort (34). In Stage I we utilized high-throughput protein arrays (23 232 total signals, in duplicate) to identify proteins of high-interest. In Stage II we designed new protein arrays (352 total signals, in duplicate) to further focus on 25 of the proteins from Stage I and expanded to a larger cohort, including both male and female samples (161 MDS and 43 AML patients; 112 healthy controls). Stage I resulted in 35 proteins displaying increased IgG reactivity in patients as compared to the healthy controls (P< 4.3 x10-07, Bonferroni Corrected P<0.01). This protein subset included 14 proteins associated with cancer, 12 with apoptosis, and 3 with the NFAT Regulation canonical pathway. Using the focused arrays we performed a classification of MDS patients and healthy controls. Stage II subsequently identified a high-interest focused set of 3 proteins, namely AKT3, FCGR3A and ARL8B displaying aberrant increased reactivity in patient subgroups, in concordance with Stage I. Autoantibody reactivity against specific proteins provides complementary information to other known molecular signatures for MDS and may enhance our capabilities for detecting and classifying MDS. In the study presented here, MDS patients were classified into Stable, Transforming or AML post MDS (L) classes retrospectively. The different patients were compared to a healthy cohort to assess increased autoantibody reactivity to specific patients as opposed to healthy groups Stage 1 of Study: 111 Files Analyzed, 37 sMDS, 22 tMDS, 16 AML(L), 34 Healthy and 2 Negative Controls (used to eliminate non-plasma signals)