An improved method for identifying biological circular RNAs
Ontology highlight
ABSTRACT: Purpose: We are using the illumina sequencing to compare the false positive and true positive circular RNA findings to confine the method to detect the true circular RNAs Methods: The testis whole transcriptome profiling was generated from 4-week mouse testis using illumina Nextseq, duplicated. The sequence reads that passed quality filters were analyzed at the transcript isoform level with TopHat followed by Cufflinks. Results: our data suggest that circular RNAs identified based on junction sequences in the RNA-seq reads, especially those from Illumina Hiseq sequencing, mostly result from template-switching events during reverse transcription by MMLV-derived reverse transcriptases. It is critical to employ reverse transcriptases lacking terminal transferase activity (e.g., MonsterScript) to construct sequencing library or perform RT-PCR for identification and quantification of true circular RNAs. Conclusions: Our study represents the first detailed analysis of retinal transcriptomes, with biologic replicates, generated by RNA-seq technology. The optimized data analysis workflows reported here should provide a framework for comparative investigations of expression profiles. Our results show that NGS offers a comprehensive and more accurate quantitative and qualitative evaluation of mRNA content within a cell or tissue. We conclude that RNA-seq based transcriptome characterization would expedite genetic network analyses and permit the dissection of complex biologic functions. The wild type mouse testis RNAs were constructed NGS library by two different enzyme, then parallel sequenced in illumina Nextseq
Project description:Purpose: We are using the illumina sequencing to compare the false positive and true positive circular RNA findings to confine the method to detect the true circular RNAs Methods: The testis whole transcriptome profiling was generated from 4-week mouse testis using illumina Nextseq, duplicated. The sequence reads that passed quality filters were analyzed at the transcript isoform level with TopHat followed by Cufflinks. Results: our data suggest that circular RNAs identified based on junction sequences in the RNA-seq reads, especially those from Illumina Hiseq sequencing, mostly result from template-switching events during reverse transcription by MMLV-derived reverse transcriptases. It is critical to employ reverse transcriptases lacking terminal transferase activity (e.g., MonsterScript) to construct sequencing library or perform RT-PCR for identification and quantification of true circular RNAs. Conclusions: Our study represents the first detailed analysis of retinal transcriptomes, with biologic replicates, generated by RNA-seq technology. The optimized data analysis workflows reported here should provide a framework for comparative investigations of expression profiles. Our results show that NGS offers a comprehensive and more accurate quantitative and qualitative evaluation of mRNA content within a cell or tissue. We conclude that RNA-seq based transcriptome characterization would expedite genetic network analyses and permit the dissection of complex biologic functions.
Project description:A new haloalkaliphilic species of Wenzhouxiangella, strain AB-CW3 was isolated from a system of alkaline soda lakes in the Kulunda Steppe. Its complete, circular genome was assembled from combined nanopore and illumina sequencing and its proteome was determined for three different experimental conditions: growth on Staphylococcus cells, casein, or peptone. AB-CW3 is an aerobic bacterium feeding mainly on proteins and peptides.
Project description:The pervasive expression of circular RNA from protein coding loci is a recently discovered feature of many eukaryotic gene expression programs. Computational methods to discover and quantify circular RNA are essential to the study of the mechanisms of circular RNA biogenesis and potential functional roles they may play. In this paper, we present a new statistical algorithm that increases the sensitivity and specificity of circular RNA detection.by discovering and quantifying circular and linear RNA splicing events at both annotated exon boundaries and in un-annotated regions of the genome Unlike previous approaches which rely on heuristics like read count and homology between exons predicted to be circularized to determine confidence in prediction of circular RNA expression, our algorithm is a statistical approach. We have used this algorithm to discover general induction of circular RNAs in many tissues during human fetal development. We find that some regions of the brain show marked enrichment for genes where circular RNA is the dominant isoform. Beyond this global trend, specific circular RNAs are tissue specifically induced during fetal development, including a circular isoform of NCX1 in the developing fetal heart that, by 20 weeks, is more highly expressed than the linear isoform as well as beta-actin. In addition, while the vast majority of circular RNA production occurs at canonical U2 (major spliceosome) splice sites, we find the first examples of developmentally induced circular RNAs processed by the U12 (minor) spliceosome, and an enriched propensity of U12 donors to splice into circular RNA at un-annotated, rather than annotated, exons. Together, our algorithm and its results suggest a potentially significant role for circular RNA in human development. 35 human fetal samples from 6 tissues (3 - 7 replicates per tissue) collected between 10 and 20 weeks gestational time were sequenced using Illumina TruSeq Stranded Total RNA with Ribo-Zero Gold sample prep kit.
Project description:Circular RNAs (circRNAs), formed by the atypical head-to-tail splicing of exons, have re-emerged as a potentially interesting RNA species given recent reports of a surprising diversity and abundance of circRNA in organisms ranging from worm to human. Here, using deep RNA sequencing, we profiled different RNA species in mouse and observed that circRNAs are significantly enriched in neural tissue, relative to other tissues. Using PacBio sequencing, we determined, for the first time, the circular structure of this population of circRNAs as well as their full-length sequences. We discovered that a disproportionate fraction of the brain circRNA population is derived from host genes that code for synaptic proteins. Moreover, based on the separate profiling of the RNAs localized in neuronal cell bodies and neuropil (enriched in axons and dendrites), we found that, on average, circular RNAs are more enriched in the neuropil than their host gene mRNA isoforms. Using high resolution in situ hybridization we, for the first time, directly visualized circRNA punctae in the dendrites of neurons. The host gene origin and location of the circRNA in neurons suggest the possibility that circRNAs might participate in the regulation of synaptic function and plasticity. Consistent with this idea, we observed via profiling at different developmental stages, that the abundance of many circular RNAs changes abruptly at a time corresponding to synaptogenesis. In addition, following a homeostatic downscaling of neuronal activity many circRNAs exhibit significant up or down-regulation. These data indicate that brain circRNAs are positioned to respond to and regulate synaptic function. Circular RNA profiling in 13 different samples in mice and four samples in rat, using Illumina sequencing
Project description:To explore the potential involvement of circular RNAs (circRNAs) in pancreatic ductal adenocarcinoma (PDAC) oncogenesis, we conducted circRNA profiling in six pairs of human PDAC and adjacent normal tissue by microarray. Our results showed that clusters of circRNAs were aberrantly expressed in PDAC compared with normal samples, and provided potential targets for future treatment of PDAC and novel insights into PDAC biology. Analyze circular RNA expression in pancreatic ductal adenocarcinoma (PDAC) by microarray platform.
Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare NGS-derived IL4/IL13 treated BMDMs transcriptome profiling (RNA-seq) to quantitative reverse transcription polymerase chain reaction (qRT–PCR) methods. Methods: BMDMs mRNA profiles of 8 weeks old wild-type (WT) mice were generated, stimulated with IL4/IL13, IL4/IL13+ TNF or TNF, deep sequenced, in triplicate, using Illumina NovaSeq 6000 platform. Results: Using an optimized data analysis workflow, we mapped about 30 million sequence reads per sample to the mouse genome (build mm9). Conclusions: Our study represents the first detailed analysis of IL4/IL13 or IL4/IL13+TNF stimulated BMDMs, with biologic replicates, generated by RNA-seq technology. The optimized data analysis workflows reported here should provide a framework for comparative investigations of expression profiles. Our results show that NGS offers a comprehensive and more accurate quantitative and qualitative evaluation of mRNA content within a cell or tissue. We conclude that RNA-seq based transcriptome characterization would expedite genetic network analyses and permit the dissection of complex biologic functions.
Project description:Purpose: The goals of this study are to compare the differentially expressed miRNAs between SW480 and SW620. Methods:Total RNA of two samples was used to prepare the miRNA sequencing library.The libraries were denatured as single-stranded DNA molecules, captured on Illumina flow cells, amplified in situ as clusters and finally sequenced for 50 cycles on Illumina NextSeq. Results:We found 72 miRNAs were downregulated on the basis of fold-change less than 0.5. However,total 160 miRNAs were upregulated on the basis of fold-change greater than 2. Conclusions: Our study represents the detailed analysis of SW480 and SW620, generated by RNA-seq technology. Our results show that NGS offers a comprehensive and more accurate quantitative and qualitative evaluation of miRNA content. We conclude that RNA-seq based transcriptome characterization would expedite genetic network analyses and permit the dissection of complex biologic functions.
2020-01-22 | GSE144002 | GEO
Project description:Illumina NextSeq Sequences for Juncus roemerianus