RNA-Seq data of Vitis vinifera cv. Furmint berry samples (Tokaj wine region) exposed to noble rot
Ontology highlight
ABSTRACT: White grape (Vitis vinifera cv. Furmint) berry samples subjected to natural noble rot were collected in a vineyard in Mád, Hungary (Tokaj wine region). Raw data include grapevine and Botrytis cinerea sequence reads.
Project description:Transcriptional changes occurring in grape berries (Vitis vinefera L. cv Cabernet Sauvignon) cultured in vitro with high (468 mM) and low (58 mM) concentrations of glucose in the culture medium was verified. Gene expression profiling was done using the Nimblegen whole genome array with 3 biological replicates.
Project description:We report the berry pericarp transcriptomic profiles of 5 red Vitis vinifera varieties: Sangiovese, Barbera, Negro amaro, Refosco and Primitivo at 4 growth stages: pea-sized berries (Bbch 75) at almost 20 days after flowering, berries beginning to touch (Bbch77) just prior véraison, the softening of the berries (Bbch 85) at the end of véraison and berries ripe for harvest (Bbch 89) mRNA profiles of 5 red grapevine varieties at 4 growth stages were generated by deep sequencing, in triplicate, using Illumina Hiseq 1000.
Project description:Blanc Du bois grapes are gaining popularity in the South eastern US due to its distinctive flavor and disease tolerance characteristics. Berry composition at harvest is a major contributing factor of wine quality. Blanc Du bois grapes are harvested from EL-38 and EL-39 stages depending on the style of wine desired or harvested early to avoid rain nearing harvest. In the current study, gel-free proteome analysis was applied to investigate changes in enzymes, primary and secondary metabolism proteins during ripening and late ripe stage. Grape berries from EL-33, EL-34, EL-36, EL-38 and EL-39 were collected based on brix, acidity and density. Protein extracts from different berry stages were resolved by electrophoresis. Proteins were extracted from the gel as a single band, detained and subjected to proteolysis with sequencing grade trypsin. Trypsin digested peptides from different berry protein extracts were separated on a nano LC and the eluent was sprayed onto to a LTQ Orbitrap Velos mass spectrometer. The raw files were analyzed using Proteome Discoverer with Sequest and Mascot search nodes using Vitis species FASTA database (70,263 entries) and the data were further validated by Scaffold software. A total of 1091, 1131, 1078, 1042 and 1066 proteins were detected in EL-33, EL-34, EL-36, EL-38 and EL-39 of berries respectively. Statistical ANOVA analysis revealed 927 proteins present across the stages that are involved in various biochemical and metabolic pathways. Seventeen proteins including dihydroflavonol reductase, sucrose phosphate synthase, PR proteins increased more than three-fold between ripe and late ripe berry stages. Other proteins that increased during ripe and late ripe stage berries were alcohol dehydrogenase 1, anthocyanidin reductase, phospho-2-dehydro-3-deoxyheptonate aldolase, fatty acid hydroperoxide lyase, cinnamyl alcohol dehydrogenase, -isopiperitenol (-)-carveol and SAM-methyltransferases.
Project description:We used Affymetrix microarray analyses of thirty-two individual Vitis vinifera cv. Cabernet Sauvignon berries sampled from two clusters at fifty-percent ripening initiation. By delineating four developmental stages of ripening initiation, we demonstrate that color is a statistically significant indicator of transcriptional state during ripening initiation. We report on clustered gene expression patterns which were mined for genes annotated with signal transduction functions in order to advance regulatory network modeling of ripening initiation in grape berries. We also demonstrated that gene expression does not differ statistically significantly at a global level in berries sampled from different plants or different positions in a cluster. Experiment Overall Design: Individual grape berries were selected at 4 developmental stages along ripening initiation for RNA extraction and hybridization to Affymetrix Vitis Genome GeneChips. One goal of this study was to determine the association between the global transcriptome state and phenotypic variables frequently used in berry staging such as color and firmness, so we defined the four time-points (development series) by color/firmness combinations: green hard (GH), green soft (GS), pink soft (PS) and red soft (RS). Individual berries representing each stage were collected from either the distal or the proximal position of one cluster one each of two plants used for experiments.
Project description:Background: The composition of grapevine berry at harvest is a major determinant of wine quality. Optimal oenological maturity of berries is characterized by a high sugar/acidity ratio, high anthocyanin content in the skin, and low astringency. However, harvest time is still mostly determined empirically, based on crude biochemical composition and berry tasting. In this context, it is interesting to identify genes that are expressed/repressed specifically at the late stages of ripening and which may be used as indicators of maturity. Results: Whole bunches and berries sorted by density were collected in vineyard on Chardonnay (white cultivar) grapevines for two consecutive years at three stages of ripening (7-days before harvest (TH-7),harvest (TH), and 10-days after harvest (TH+10)). Microvinification and sensory analysis indicate that the quality of the wines made from the whole bunches collected at TH-7, TH and TH+10 differed, TH providing the highest quality wines. In parallel, gene expression was studied with Qiagen/Operon microarrays using two types of samples, i.e. whole bunches and berries sorted by density. Only 12 genes were consistently up- or down-regulated in whole bunches and density sorted berries for the two years studied in Chardonnay. 52 genes were differentially expressed between the TH-7 and TH samples. In order to determine whether these genes followed a similar pattern of expression during the late stagesof berry ripening in a red cultivar, nine genes were selected for RT-PCR analysis with Cabernet Sauvignon grown under two different temperature regimes affecting the precocity of ripening. The expression profiles and their relationship to ripening were confirmed in Cabernet Sauvignon for seven genes, encoding a carotenoid cleavage dioxygenase, a galactinol synthase, a late embryogenesis abundant protein, a dirigent-like protein, a histidine kinase receptor, avalencene synthase and a putative S-adenosyl-L-methionine:salicylic acid carboxyl methyltransferase. Conclusions: This set of up- and down-regulated genes characterize the late stages of berry ripening in the two cultivars studied, and are indirectly linked to wine quality. They might be used directly or indirectly to design immunological, biochemical or molecular tools aimed at the determination of optimal ripening in these cultivars.
Project description:Background: Grape cultivars and wines are distinguishable by their color, flavor and aroma profiles. Omic analyses (transcripts, proteins and metabolites) are powerful tools for assessing biochemical differences in biological systems. Results: Berry skins of red- (Cabernet Sauvignon, Merlot, Pinot Noir) and white-skinned (Chardonnay, Semillon) wine grapes were harvested near optimum maturity from the same experimental vineyard and Ë?Brix-to-titratable acidity ratio. Identical sample aliquots were analyzed for transcripts by grapevine whole-genome oligonucleotide microarray and RNA-seq technologies, proteins by nano-liquid chromatography-mass spectroscopy, and metabolites by gas chromatography-mass spectroscopy and liquid chromatography-mass spectroscopy. Principal components analysis of each of five Omic technologies showed similar results across cultivars in all Omic datasets. Comparison of the processed data of genes mapped in RNA-seq and microarray data revealed a strong Pearson's correlation (0.80). The exclusion of probesets associated with genes with potential for cross-hybridization on the microarray improved the correlation to 0.93. The overall concordance of protein with transcript data was low with a Pearson's correlation of 0.27 and 0.24 for the RNA-seq and microarray data, respectively. Integration of metabolite with protein and transcript data produced an expected model of phenylpropanoid biosynthesis, which distinguished red from white grapes, yet provided detail of individual cultivar differences. Conclusions: The five Omic technologies were consistent in distinguishing cultivar variation. There was high concordance between transcriptomic technologies, but generally protein abundance did not correlate well with transcript abundance. The integration of multiple high-throughput Omic datasets revealed complex biochemical variation amongst five cultivars of an ancient and economically important crop species. Vitis vinifera L. cv. Cabernet Sauvignon, Chardonnay, Merlot, Pinot Noir, Semillon berries were harvested from Nevada Agricultural Experiment Station Valley Road Vineyard, Reno, NV, USA. Whole-genome microarray analysis was used to assess the transcriptomic response of berry skins at harvest, approximately 24 °Brix (2011 vintage). Vines were grown under water deficit and well-watered conditions. At least two clusters harvested from non-adjacent vines were used for each of five experimental replicates.
Project description:Transcriptional expression in the rachis of pre-sympotmatic (T1) and symptomatic (T2) berry shrivel (BS) clusters in comparison to control samples. Samples were collected from a vineyard in Mailberg, Lower Austria, in 2011 from cultivar Blauer Zweigelt (Vitis vinifera) grafted on Kober 5BB. The objetive of the study was to identify metabolic processes changed in the rachis due to BS induction and symptom development
Project description:Temperature and solar radiation influence Vitis vinifera L. berry ripening. Both environmental conditions fluctuate cyclically on a daily period basis and the strength of this fluctuation affects grape ripening too. Additionally, a molecular circadian clock regulates daily cyclic expression in a large proportion of the plant transcriptome modulating multiple developmental processes in diverse plant organs and developmental phases. Circadian cycling of fruit transcriptomes has not been characterized in detail despite their putative relevance in the final composition of the fruit. Thus, in this study, gene expression throughout 24 h periods in pre-ripe berries of Tempranillo and Verdejo grapevine cultivars was followed to determine whether different ripening transcriptional programs are activated during certain times of day in different grape tissues and genotypes. Results: Microarray analyses identified oscillatory transcriptional profiles following circadian variations in the photocycle and the thermocycle. A higher number of expression oscillating transcripts were detected in samples carrying exocarp tissue including biotic stress-responsive transcripts activated around dawn. Thermotolerance-like responses and regulation of circadian clock-related genes were observed in all studied samples. Indeed, homologs of core clock genes were identified in the grapevine genome and, among them, VvREVEILLE1 (VvRVE1), showed a consistent circadian expression rhythm in every grape berry tissue analysed. Light signalling components and terpenoid biosynthetic transcripts were specifically induced during the daytime in Verdejo, a cultivar bearing white-skinned and aromatic berries, whereas transcripts involved in phenylpropanoid biosynthesis were more prominently regulated in Tempranillo, a cultivar bearing black-skinned berries. Conclusions: The transcriptome of ripening fruits varies in response to daily environmental changes, which might partially be under the control of circadian clock components. Certain cultivar and berry tissue features could rely on specific circadian oscillatory expression profiles. These findings may help to a better understanding of the progress of berry ripening in short term time scales. A total of 54 samples were hybridized. Three different circadian time course series consisted on six time point each. Series corresponded to pericarp of Verdejo grapevine cultivar and berry flesh and skin in separate of Tempranillo cultivar. Three biological replicates were analyzed for each series.
Project description:Mature grapevine berries at the harvesting stage (MB) are very susceptible to the gray mold fungus Botrytis cinerea while veraison berries (VB) are not. We conducted simultaneous microscopic and transcriptomic analyses of the pathogen and the host to investigate the infectious process developed by B. cinerea on MB versus VB, and the plant defense mechanisms deployed to stop the fungus development. On the pathogen side, our genome-wide transcriptomic data revealed that B. cinerea genes up-regulated during infection of MB are enriched in functional categories related to necrotrophy such as degradation of plant cell wall, proteolysis, membrane transport, reactive oxygen species generation and detoxification. Quantitative-PCR on a set of representative genes related to virulence and microscopic observations further demonstrated that the infection is also initiated on VB but stops at the penetration stage. On the plant side, genome-wide transcriptomic analysis and metabolic data revealed a defense pathways switch during berry ripening. In response to B. cinerea infection, VB activated a burst of reactive oxygen species (ROS), the salicylate (SA)-dependent defense pathway, the synthesis of the resveratrol phytoalexin and cell-wall strengthening. In opposite, infected MB activated the jasmonate (JA)-dependent pathway which does not stop the fungal necrotrophic process. Grapevine berries at veraison (VB) and harvesting stages (MB) were inoculated with Botrytis cinerea B05-10 and samples were taken at 24h and 48h post-inoculation. An additional uninfected control sample taken at 0h post-inoculation was included in the experimental design. 3 replicates per sample were performed. The total-RNA samples were labeled and used for hybridization on NimbleGen 12plex Vitis vinifera gene expression array.
Project description:Background: Phenotypic plasticity refers to the range of phenotypes a single genotype can express as a function of its environment. These phenotypic variations are attributable to the effect of the environment on the expression and function of genes influencing plastic traits. We investigated phenotypic plasticity in grapevine by comparing the berry transcriptome in a single clone of the vegetatively-propagated common grapevine species Vitis vinifera cultivar Corvina through three consecutive growth years cultivated in 11 different vineyards in the Verona area of Italy. Results: Most of the berry transcriptome clustered by year of growth rather than common environmental conditions or viticulture practices, and transcripts related to secondary metabolism showed high sensitivity towards different climates, as confirmed also by metabolomic data obtained from the same samples. When analyzed in 11 vineyards during one growth year, the environmentally-sensitive berry transcriptome comprised 5% of protein-coding genes and 18% of the transcripts modulated during berry development. Plastic genes were particularly enriched in ontology categories such as transcription factors, translation, transport and secondary metabolism. Specific plastic transcripts were associated with groups of vineyards sharing common viticulture practices or environmental conditions, and plastic transcriptome reprogramming was more intense in the year characterized by extreme weather conditions. We also identified a set of genes that lacked plasticity, showing either constitutive expression or similar modulation in all berries. Conclusions: Our data reveal candidate genes potentially responsible for the phenotypic plasticity of grapevine and provide the first step towards the characterization of grapevine transcriptome plasticity under different agricultural systems. Vitis vinifera cultivar Corvina clone 48 berries were harvested from different vineyards, each located in one of the three most important wine production macro-areas of the Verona region: Bardolino, Valpolicella and Soave, on the basis of the site geographical coordinates. For each of the selected vineyards, specific environmental conditions (altitude and type of soil) and farming and agricultural practices used (training system, rows facing direction, planting layout, vineyard age and rootstock type) were recorded. Vineyards were selected in order to maximize differences in locations and in microenvironmental and farming conditions. Berries were harvested at three different developmental stages: véraison, mid-ripening and harvest; each sample was collected in three biological replicates, to cover the whole vineyard variability. The same sampling procedure had been repeated over three consecutive vintages (2006, 2007 and 2008).