Genetic Engineering of indica Rice with AtDREB1A Gene for enhanced Abiotic Stress Tolerance
Ontology highlight
ABSTRACT: Global gene expression analysis of AtDREB1A transgenic rice line (TL4) at reproductive stage under drought stress was conducted using microarray to explore the drought stress-responsive transcription pathways. Drought stress was imposed at late vegetative stage till booting of the plants. Flag leaf was collected on 14th day of the drought stress. Drought stress was imposed on T3 plants of two homozygous transgenic rice events of PS2 and NT plants by withholding irrigation for 14 days in the National Phytotron Facility, IARI.
Project description:The CAMTA1 mutant and Col-0 were studied under water and drought condition. The camta1 showed stunted primary root growth under osmotic stress. The expression analysis revealed drought recovery as major indicative pathway along with membrane and chloroplast related protein in camta1 under drought stress. Large number of positively regulated genes were related to osmotic balance, transporters, AP2 and ABA. We used Affymetrix expression analysis to validate the role of CAMTA1 under drought stress. The RNA of Col-0 and camta1 mutant were isolated in water and drought condition.The ATH1 gene chip was used for expression analysis.
Project description:Three rice major tissues, namely flag leaf, shoot and panicle, were involved in this study. Each tissue had two kinds stress treatment, drought and high salinity, in 3 different time courses. For drought treated samples, an additional water recovery was applied. Each experiment had three replicates. Keywords: Comparison of gene expression in three tissues with stress treatment and without treatment To globally elucidate potential genes involved in drought and high-salinity stresses responses in rice, an oligomer microarray covering 37,132 genes including cDNA or EST supported and putative genes was applied to study the expression profiling of shoot, flag leaf, and panicle under drought or high-salinity treatment. Three rice major tissues, namely flag leaf, shoot and panicle, were involved in this study. Each tissue had two kinds stress treatment, drought and high salinity, in 3 different time courses. For drought treated samples, an additional water recovery was applied. Each experiment had three replicates.
Project description:Plasma membrane NADPH oxidases (NOXs) are major producers of reactive oxygen species (ROS) in plant cells under normal growth and stress conditions. Rice NOXs have multiple homologs but their functional mechanisms are largely unknown. We used microarrays to detail the global gene expression profiles in rice wild-type (WT, Dongjin) and a mutant osnox2 which loss the functions of OsNOX2 protein under drought and identified distinct classes of genes between the two type rice plants under both normal growth and drought stressed conditions. The youngest fully expanded leaves from 2.5-month-old WT and osnox2 plants (three replicates each), grown under normal growth (soil moisture, 47.3%) and drought conditions (soil moisture, 8.5%), were used for RNA extraction and hybridization on Affymetrix microarrays. Control: normal growth condition; Drought: drought stress condition.
Project description:Genome-wide Transcriptional Analysis of Genes Associated with Drought Stress in Gossypium herbaceum root This experiment was designed to investigate the molecular mechanism associated with drought tolerance in root tissue of Gossypium herbaceum. The gene expression profiles of the root tissue using Affymetrix Cotton Genome Array were compared with drought tolerant and drought sensitive genotype of G.herbaceum under drought stress and watered condition. Many genes in various molecular function or biological processes were over- or under-represented between drought tolerant and sensitive genotype, suggesting various molecular mechanism and biochemical pathways are interlinked and tolerant genotype have developed multiple mechanisms as an adaptory behavior against drought stress. The transcriptional responses of root tissue in drought tolerant and sensitive genotype of Gossypium herbaceum under drought stress have been investigated. Physiological responses to drought stress, such as stomatal conductance, water use efficiency, root bending assay on different mannitiol concentration were also measured as indicators of imposed drought stress. Total RNA was isolated from root tissue from both genotype under drought stress and normal irrigated condition with three biological replicates
Project description:Transcriptome analysis in cotton under drought stress. To study the molecular response of drought stress in cotton under field condition global gene expression analysis was carried out in leaf tissue. Gossypium hirsutum cv. Bikaneri Nerma was used for the gene expression analysis. Cotton plants were subjected to drought stress at peak flowering stage. Leaf samples were collected when the soil moisture content was 19.5% which is 50% of the normal control plots. Gene expression profiles in drought induced and their respective control samples were analyzed using Affymertix cotton Genechip Genome arrays to study the global changes in the expression of genome. Total RNA was isolated from leaf tissue. Samples were collected from both drought induced and control plants. Biotin labeled cRNA was hybridized on Affymertix cotton Genechip Genome array following the Affymetrix protocols. Three biological replicates were maintained.
Project description:To better undersand the effects of drought stress on wheat developing seeds, the transcription profile of early developing wheat seeds under control and drought stress conditions were comparatively analyzed by using the Affymetrix wheat geneChip. Drought stress is a major yield-limiting factor for wheat. Wheat yields are particularly sensitive to drought stress during reproductive development. Early seed development stage is an important determinant of seed size, one of the yield components. We specifically examined the impact of drought stress imposed during postzygotic early seed development in wheat. We imposed a short-term drought stress on plants with day-old seeds and observed that even a short-duration drought stress significantly reduced the size of developing seeds as well as mature seeds. Drought stress delayed the developmental transition from syncytial to cellularized stage of endosperm. Coincident with reduced seed size and delayed endosperm development, a subset of genes associated with cytoskeleton organization was misregulated in developing seeds under drought-stressed. Several genes linked to hormone pathways were also differentially regulated in response to drought stress in early seeds. Notably, drought stress strongly repressed the expression of wheat storage protein genes such as gliadins, glutenins and avenins as early as 3 days after pollination. Our results provide new insights on how some of the early seed developmental events are impacted by water stress, and the underlying molecular pathways that can possibly impact both grain size and quality in wheat. Winter wheat cultivar Redland, PI 502907 (Triticum aestivum L.) was used for this study. Seedlings were vernalized at 4°C for 6 weeks and then transplanted to a one gallon pot of soil-sand mixture (3:1, v/v) and grown in a growth chamber under the following conditions: relative humidity, 50–70%; 16-h light/8-h dark photoperiod; 21°C daytime temperature and 18°C nights. Plants were watered regularly twice daily at the rate of 100ml/ per pot. Because, wheat has an asynchronous fertilization pattern for ovlues in the inflorescence, each floret needs to be specifically marked for timing the fertilization and stress induction. After spikes developed, unfertilized ovules were monitored and observed for the fertilization process. Closed wheat spikes with anthers outside were marked as fertilized. Drought stress was imposed 24h after the fertilization (HAF). Drought stress treatment was initiated by discontinuing watering on the drought treatment plants while control plants were regularly watered twice daily. Stress treatment was applied at 48 HAF and relieved at 96 HAF. The microarray study focuses on 24 HAF to 72 HAF in control and drought stress conditions. We started to impose drought stress 24HAF.
Project description:This SuperSeries is composed of the following subset Series: GSE29566: Global gene expression analysis of cotton (Gossypium hirsutum L.) under drought stress in leaf tissue. GSE29567: Global gene expression analysis of cotton (Gossypium hirsutum L.) under drought stress during fibre development stages. Refer to individual Series
Project description:In the current study we did microarray of upland rice cultivar Nagina22 for drought stress at reproductive stage (panicle initiation) and analyzed drought stress responsive genes. We have taken flag leaf for our study as it is most essential organ for photosynthesis in rice. Normal watering Vs Drought Stress Flag leaf of Control (Three biological replicates) plant of Nagina22: C1, C2, C3 Flag leaf of drought stressed (Three biological replicates) plant of Nagina 22: S1, S2, S3
Project description:The severity of impact of drought on crops is contingent on the developmental stage of the plant, with the most sensitive stage being the reproductive stage. Hence, gene expression profiling has been used to understanding drought response and resistance mechanism in rice. Here we present drought transcriptomes of rice in three developmental stages and gain insights into the processes and regulatory mechanisms involved in common and stage specific drought responses. Total RNA was isolated from the rice seedlings, vegetative (V4) and reproductive (R4) tissues of both control and stress treated plants for hybridization on Affymetrix microarrays. Two independent replicates for seedling and reproductive stages, and three replicates for vegetative stages were generated, for both control and stress samples. For drought treatments, plants were gradually subjected to field drought conditions in order to reach 50% field capacity (FC) by regulating water supply, whereas control plants were maintained at 100% FC.
Project description:To dissect the molecular mechanisms underlying drought tolerance (DT) in rice, transcriptome differences of a DT introgression line H471, the DT donor P28 and the drought sensitive recurrent parent HHZ under drought stress were investigated using deep transcriptome sequencing. Results revealed a differential constitutive gene expression prior to stress and distinct global transcriptome reprogramming among three genotypes under time-series drought stress, consistent with their differential genotypes and DT phenotypes. DT introgression line H471, the DT donor P28 and the drought sensitive recurrent parent HHZ under drought stress were investigated using deep transcriptome sequencing.The drought stress treatment was started by withholding water at the tillering stage. The days were counted after the AWC in the soil reached 20% to allow drought measurements at precisely determined intervals, and the soil water content reached 15%, 10% and 7.5% after 1d, 3d and 4d drought treatment, respectively.Three top leaves for each sample were harvested for each genotype under 1d and 3d drought stress and control conditions. All samples were immediately frozen in liquid nitrogen and stored at -80C and then for transcriptome sequencing.