Transcriptional profiling of Adenosine receptor (AdoR) null mutant in Drosophila melanogaster imagoes
Ontology highlight
ABSTRACT: Dysregulation of adenosine (Ado) homeostasis has been observed in both rodent models and human patients of Huntington’s disease (HD). However, the underlying mechanisms of Ado signaling in HD pathogenesis is still unclear. In this study we examined influence of Ado signaling on Drosophila HD model. We further examined the transcription profile of AdoR mutants by microarray analysis to identified a downstream target of AdoR signaling, which mediates the AdoR effects on HD pathology. Our findings have important implications for the crosstalk between Ado signaling and pathogenic effects of HD as well as other human diseases associated with polyglutamine aggregation.
Project description:Dysregulation of adenosine (Ado) homeostasis has been observed in both rodent models and human patients of Huntington’s disease (HD). However, the underlying mechanisms of Ado signaling in HD pathogenesis is still unclear. In this study we examined influence of Ado signaling on Drosophila HD model. We further compared the transcription profiles of AdoR and ENT2 mutants by microarray analysis to identify a downstream target of AdoR signaling, which mediates the AdoR effects on HD pathology. Our findings have important implications for the crosstalk between Ado signaling and pathogenic effects of HD as well as other human diseases associated with polyglutamine aggregation.
Project description:Entomopathogenic nematodes (EPNs) of the genera Heterorhabditis are obligate and lethal insect parasites. In recent years they have been used increasingly as biological control agents. These EPNs are symbiotically associated with bacteria of the genera Photorhabdus. The bacterial symbionts are essential to kill the host (within 24-48 hours) and digest its tissues to provide nutrients for themselves as well for expanding nematodes. Drosophila larvae are suitable insect hosts and part of the tripartite model system we used before to show the importance of haemolymph clotting and eicosanoids during the infection. We used the well-established tripartite model (Drosophila, nematodes, bacteria), DNA chips and bioinformatic tools to compare gene expression in non-infected and infected fly larvae. We focused on the early time point of nematode infection and therefore infected Drosophila larvae using H. bacteriophora harbouring GFP-labelled P. luminescens bacteria. Infected (GFP positive) larvae were collected 6 hours after infection.
Project description:In the present study we analyzed the function of one member of Drosophila CLPs namely Drosophila IDGF3 with a special focus on immunity. We found that Idgf3 mutants are homozygous viable, and have defects in hemolymph clotting, which is the earliest of Drosophila larvae response after injury. We could further demonstrate that IDGF3 contributes to fly immunity: idgf3 mutants show increased sensitivity to Gram-negative bacteria as well as increased mortality after nematode infections. IDGF3 overexpression leads to a hyper-coagulation phenotype in larvae and a decrease in viability of adult flies. Transcription profiling further confirmed that IDGF3 is involved in the activation of innate defense mechanisms and signal pathways connected to wound healing and regenerative processes. A large fraction of immune- and regenerative genes require IDGF3 for their induction, suggesting that ÎÃô similar to Chi3l1- IDGF3 is a key regulators of the epithelial response to injury and infection.
Project description:Drosophila larvae were infected with Erwinia bacteria (Ecc15) by introducing concentrated bacterial pellet into the fly medium. The tracheae were dissected 24h later. Three genotypes of larvae were compared: wt (CantonS), RelE20 and PGRP-LA, each present in unchallenged and infected conditions. 3 independent repeats were performed.
Project description:Transcript abundance was measured in whole-body virgin male Drosophila serrata from 41 inbred lines that had diverged through 27 generations of mutation accumulation. Pleiotropic mutations are the ultimate source of genetic variation in complex traits, including many human diseases. However, the nature and extent of mutational pleiotropy remain largely unknown. Here, we investigate the variation in 11,604 gene expression traits among 41 mutation accumulation lines of Drosophila serrata, which had diverged for 27 generations. We detected significant mutational variance in 4.6% of ESTs, but 70% of ESTs were invariant among lines, allowing us to reject a null hypothesis of phenome-wide universal pleiotropy. Mutational covariance among ESTs was detected at a frequency of only 1 in 193 random pairs of variable EST, bu t was detected among random combinations of five ESTs in 1 in 5 cases, revealing that mutational covariance among multiple ESTs was common. The observed frequency of significant multivariate covariance among random ESTs implied that a substantial number of ESTs (>70) must be pleiotropically affected by at least some mutations. We measured gene expression of male Drosophila serrata from 41 mutation accumulation lines (whole-body). Data from two replicates for each line are presented.
Project description:Transcript abundance was measured in whole-body virgin male Drosophila serrata from 41 inbred lines that had diverged through 27 generations of mutation accumulation that were sexually selected Sexual selection is predicted to have widespread effects on the genetic variation generated by new mutations as a consequence of the genic capture of condition by male sexual traits. We manipulated the opportunity for sexual selection on males during 27 generations of mutation accumulation in inbred lines of Drosophila serrata, and used a microarray platform to investigate the effect of sexual selection on the expression of 2685 genes, representing a broad coverage of biological function. Sexual selection had little effect on mean gene expression levels, with only 4 genes diverging significantly at a false discovery rate of 5% . In contrast, sexual selection impacted on both the magnitude and nature of mutational variance accumulating in these genes. The magnitude of mutational variance increased under sexual selection by an average of 29%. Mutational variance was less commonly generated by extreme phenotypes less commonly under sexual selection. Furthermore, analysis of random sets of five genes revealed that the mutational variance that accumulated under sexual selection was less pleiotropic in nature than that found in the absence of sexual selection. The generation of greater mutational variance without a general concomitant change in mean expression under sexual selection suggested that gene expression traits were be under apparent rather than direct sexual selection. We discuss two main explanations for the broad-based increase in mutational variance under sexual selection that both require extensive pleiotropy between traits affecting male mating success, standard metric traits represented here by gene expression traits, and general fitness. We measured gene expression of male Drosophila serrata from 41 mutation accumulation lines (whole-body) that were sexually selected. Data from two replicates for each line are presented.
Project description:Mushroom bodies (MBs) are the centers for olfactory associative learning and elementary cognitive functions in the Drosophila brain. To get insights of the repertoire of MB genes that control initiation and maintenance of neural differentiation as well as the repertoire of neural factors that may have functions in the synaptic plasticity of MB neurons during learning and memory, we compared the transcript profiles between wild type and MB-ablated brains using a Drosophila whole-genome microarray. Newly hatched larvae were briefly administered with a DNA-synthesis inhibitor, hydroxyurea, and raised to adults, from which total brain RNA was analyzed. Experiment Overall Design: Two conditions analyzed: Control Brains and Musroom Body-ablated brains. Experiment Overall Design: Each condition was analyzed in triplicate.
Project description:Intralocus sexual conflict, where males and females have different fitness optima for the same trait, has been suggested to potentially be resolved by genomic imprinting, whereby expression in offspring is altered according to parent-of-origin. However, this idea has not yet been empirically tested. Here, we designed an experimental evolution protocol in Drosophila melanogaster which enabled us to look for imprinting effects on the X-chromosome. We enforced father-to-son transmission of the X-chromosome for many generations, and compared fitness and gene expression levels between control males, males with a control X-chromosome that had undergone one generation of father-son transmission (CDX), and males with an X-chromosome that had undergone many generations of father-son transmission (MLX). Although fitness differences were consistent with lowered fitness of males with a paternally inherited X-chromosome, expression differences suggested that this was due to deleterious maternal effects rather than imprinting. We conclude that imprinting is unlikely to resolve intralocus sexual conflict in Drosophila melanogaster. 18 samples were analyzed. There were 3 replicate populations within each of 3 treatments (Control, CDX, and MLX), and two males were analyzed from each population, for a total of 18 males.
Project description:Royal Jelly (RJ) is a product made by honey bee workers and is required for queen differentiation and accompanying changes in queen body size, development time, lifespan and reproductive output relative to workers. Previous studies have reported similar changes in Drosophila melanogaster in response to RJ. Here, we quantified viability, development time, body size, productivity, lifespan and genome wide transcript abundance of D. melanogaster reared on standard culture medium supplemented with increasing concentrations of RJ. We found that lower concentrations of RJ do induce significant differences in body size in both sexes; higher concentrations reduce size, increase mortality, shorten lifespan and reduce productivity. Increased concentrations of RJ also consistently lengthened development time in both sexes. RJ is associated with changes in expression of 1,581 probe sets assessed using Affymetrix Drosophila 2.0 microarrays, which were enriched for genes associated with metabolism and amino acid degradation. The transcriptional changes are consistent with alterations in cellular processes to cope with excess nutrients provided by RJ, including biosynthesis and detoxification, which might contribute to accelerated senescence and reduced lifespan.
Project description:Comparison of females mated to males null for Sex-Peptide (SP0, Liu, H. and E. Kubli, Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc Natl Acad Sci U S A, 2003. 100(17): p. 9929-33) or to control, Sex-Peptide producing, males. Comparisons were made at 3 and 6 hours after mating, in dissected Head-Thorax body parts.