Gene array Airway Smooth Muscle Control vs CoCulture with BEAS2B cells
Ontology highlight
ABSTRACT: Human airway smooth muscle cells were co-cultured with BEAS-2B epithelial cells (or Control). Airway smooth muscle RNA was extracted and sent for Illumina HT-12 micro-array to examine gene expression.
Project description:Persistent severe asthma is associated with hyper-contractile airways and structural changes in the airway wall, including an increased airway smooth muscle (ASM) mass. This study used gene expression profiles from asthmatic and healthy airway smooth muscle cells grown in culture to identify novel receptors and pathways that potentially contributed to asthma pathogenesis. We used microarrays to compare the gene expression between asthmatic and healthy airway smooth muscle cells to understand the underlying pathway contributing the differences in cellular phenotypes Asthmatic airway smooth muscle cells (ASMC) are intrinsically different and have a differential transcriptional response to pro-fibrotic, pro-proliferation and pro-inflammatory stimuli than ASMC from healthy patients. We sought to identify genes that are differentially expressed between asthmatic and healthy ASMC under various stimulations which mimic the asthmatic airways. To this end, we obtained human ASMC from bronchial biopsies and explanted lungs from doctor diagnosed asthmatic patients (n=3) and healthy controls (n=3). The ASMC were then grown in culture and treated with pro-fibrotic (Transforming growth factor beta (TGFβ)), pro-proliferation (Fetal Bovine Serum (FBS)) and pro-inflammatory stimuli (Interleukin-1 beta (IL-1β)) for 8 hours. Gene expression was then evaluated using Affymetrix Human Gene 1.0ST arrays.
Project description:Transcriptional Profiling of Human Airway Smooth muscle cells from subjects with and without asthma-effects of mimicking viral challenge
Project description:Glucocorticoids, which activate glucocorticoid receptor signaling and thus modulate gene expression, are widely used to treat asthma. Glucocorticoids exert their therapeutic effects in part through modulating airway smooth muscle structure and function. However, the effects of genes that are regulated by GCs on airway function are not fully understood. Here, we used transcription profiling to characterize the effects of a potent glucocorticoid, dexamethasone, on cultured human airway smooth muscle gene expression at 4 and 24 hours. This study examined differential gene expression induced by treatment of cultured human airway smooth muscle cells with dexamethasone. There were 3 groups of samples and each group had 4 biological replicates. Group 1 was no treatment, Group 2 was dexamethasone (dex) treatment for 4 hours, Group 3 was dex treatment for 24 hours. Cultures were synchronized so harvest occurred at the same time for all three groups. 2 samples are not included in this analysis (based on unsupervised clustering of samples and diagnostic plots).
Project description:Smooth muscle differentiation has been proposed to sculpt airway epithelial branches in mammalian lungs. Serum response factor (SRF) acts with its cofactor myocardin to promote the expression of contractile smooth muscle markers. However, smooth muscle cells exhibit a variety of phenotypes beyond contractile that are independent of SRF-myocardin-induced transcription. To determine whether airway smooth muscle exhibits phenotypic plasticity during embryonic development, we deleted Srf from the pulmonary mesenchyme. Srf-mutant lungs branch normally, and the mesenchyme exhibits normal cytoskeletal features and patterning. scRNA-seq revealed an Srf-null smooth muscle cluster wrapping the airways of mutant lungs that lacks contractile smooth muscle markers but retains many features of control smooth muscle. Srf-null airway smooth muscle exhibits a synthetic phenotype, compared to the contractile phenotype of wildtype airway smooth muscle. Our findings reveal plasticity in mesenchymal differentiation during lung development and demonstrate that a synthetic smooth muscle layer is sufficient for airway branching morphogenesis.
Project description:Rationale: Asthma is a chronic inflammatory airway disease. The most common medications used for its treatment are β2-agonists and glucocorticosteroids, and one of the primary tissues that these drugs target in the treatment of asthma is the airway smooth muscle. We used RNA-Seq to characterize the human airway smooth muscle (HASM) transcriptome at baseline and under three asthma treatment conditions. Methods: The Illumina TruSeq assay was used to prepare 75bp paired-end libraries for HASM cells from four white male donors under four treatment conditions: 1) no treatment; 2) treatment with a β2-agonist (i.e. Albuterol, 1μM for 18h); 3) treatment with a glucocorticosteroid (i.e. Dexamethasone (Dex), 1μM for 18h); 4) simultaneous treatment with a β2-agonist and glucocorticoid, and the libraries were sequenced with an Illumina Hi-Seq 2000 instrument. The Tuxedo Suite Tools were used to align reads to the hg19 reference genome, assemble transcripts, and perform differential expression analysis using the protocol described in https://github.com/blancahimes/taffeta mRNA profiles obtained via RNA-Seq for four primary human airway smooth muscle cell lines that were treated with dexamethasone, albuterol, dexamethasone+albuterol or were left untreated.
Project description:Airway smooth muscle cells were stimulated with conditioned medium from BEAS-2B cells in the absence (Control) or Inhibition of miR-210.
Project description:In order to unravel the impact of intestinal smooth muscle tissue on the intestinal epithelium, we isolated clean smooth muscle, cultured it for 24h in DMEM-F12, and collected the supernatant (muscle-SN). This supernatant was used to treat small intestinal organoids (made of intestinal epithelium), compared to normal ENR treatment. After 5 days of muscle-SN exposure, we disrupted the organoids, and directly isolate the RNA. RNA-seq was performed in this sample to assess the genetic changes induced by muscle products.
Project description:Persistent severe asthma is associated with hyper-contractile airways and structural changes in the airway wall, including an increased airway smooth muscle (ASM) mass. This study used gene expression profiles from asthmatic and healthy airway smooth muscle cells grown in culture to identify novel receptors and pathways that potentially contributed to asthma pathogenesis. We used microarrays to compare the gene expression between asthmatic and healthy airway smooth muscle cells to understand the underlying pathway contributing the differences in cellular phenotypes
Project description:NOX1 is a catalytic subunit of nonphagocytic NADPH oxidase, mainly localized to smooth muscle cells in the vasculature. We investigated the pathology underlying the pulmonary arterial hypertension-like phenotype demonstrated in mice deficient in the Nox1 gene (Nox1-KO). Spontaneous enlargement and hypertrophy of the right ventricle, accompanied by hypertrophy of pulmonary vessels, were demonstrated in Nox1-KO at 9-18 weeks of age. Since an increased number of ?-smooth muscle actin-positive vessels was observed in Nox1-KO, pulmonary arterial smooth muscle cells (PASMCs) were isolated and characterized by flow cytometry and TUNEL staining. In Nox1-/Y PASMC, the number of apoptotic cells was significantly reduced without any change in the expression of endothelin-1, and hypoxia-inducible factors HIF-1a and HIF-2a, factors implicated in the pathogenesis of PAH. microRNA expression profiling of mouse pulmonary arterial smooth muscle cells in wild-type and NOX1-KO was analyzed. Pulmonary arterial smooth muscle cells were harvested form 3 mice.