ABSTRACT: 50 phenotypic plants were isolated from backcross F2 generation, and DNA was extracted and mixed for high-throughput sequencing analysis,Then SNP sites in the restorer mutants were compared with their parents
Project description:The paired-end Illumina sequencing of total genomic DNA from Arabidopsis were performed to detect unique breakpoints consistent with rearrangements of chloroplast DNA.
Project description:CH891(1C), CH891(2A),CH891(1C+2A) and CH891 were sampled in leaf tissue at heading stage. The differentially expressed proteins in the proteome between transgenic restorer lines and recurrent parents were compared, and their functional annotation and enrichment analysis were performed
Project description:Metabolomic profiles were compiled from oak and wine yeast parents, and their F2 hybrids. Included in this study are extraction controls.
Project description:Activated eosinophils contribute to airway dysfunction and tissue remodeling in asthma, and thus are considered an important factor in asthma pathology. We report here comparative proteomic and phosphoproteomic changes upon activation of eosinophils using eight cytokines individually and in selected cytokine combinations, in time-course reactions. Differential protein and phosphoprotein expressions were determined by mass spectrometry after 2-dimensional gel electrophoresis (2DGE) followed by protein identification by MS, and by label-free LC-MS/MS. We found that each cytokine-stimulation produced significantly different changes in the eosinophil proteome and phosphoproteome, with phosphoproteomic changes being more pronounced and having an earlier onset. Furthermore, we observed that IL-5, GM-CSF, and IL 3 showed the greatest change in protein expression and phosphorylation, and this expression differed markedly from those of the other five cytokines evaluated. Comprehensive univariate and multivariate statistical analyses were employed to evaluate the comparative results. We also monitored eosinophil activation using flow cytometry (FC) analysis of CD69 expression. In agreement with our proteomic studies, FC indicated that IL-5, GM-CSF, and IL-3 were more effective than the other five cytokines studied in stimulating a cell surface CD69 increase indicative of eosinophil activation. Moreover, selected combinations of cytokines revealed proteomic patterns with many proteins in common with single cytokine expression patterns but also showed a greater than additive effect of the two cytokines employed, indicating a more complex signaling pathway that was reflective of a more typical inflammatory pathology.
Project description:Cornelia de Lange syndrome (CdLS) is a rare genetic disease associated with cohesinopathy. A novel iPSC line was generated from the CdLS patient carrying a heterozygous missense point-mutation of the NIPBL gene. iPSC lines prepared from the healthy parents and the mutation-corrected isogenic cell lines are used as the respective controls. Upon differentiation into hepatocytes, the patient-derived iPSC demonstrate the capacity to express hepatocyte-specific marker transcripts and the respective proteins, however, the efficiency of differentiation is significantly inferior to those of the respective controls, demonstrated by single-cell RNA sequencing and immune-fluorescent analyses. Global change of transcriptome in the patient-derived iPSC relative to the control cells is associated with altered chromatin accessibility, assessed by RNAseq combined with ATACseq analysis. Differentially down-regulated genes in the patient-derived iPSC, in particular, are those coding for proteins related to neural differentiation and transcription factors, while up-regulated genes contain some of antisense RNA coding genes, pseudo genes and long non-coding RNAs. Some of the differentially regulated genes are consistent with the altered chromatin accessibility and this observation is consistent during hepatocyte differentiation. Thus, the mutation in the NIPBL gene of the CdLS patient could be responsible for defects of differentiation primarily due to alteration of chromatin accessibility.
Project description:We identified KIF7, a major actor of Shh pathway as the responsible gene for a polymalformative syndrome in 3 siblings born from consanguinous parents.<br>In order to study the expression of Shh pathway actors and to identify deregulation in expression of targets of the pathway, we performed microarray expression analysis with RNA extracted from pulmonary tissues from three mutated fetuses and from three age-match controls
Project description:Molecular programs that mediate normal cell differentiation are required for oncogenesis and tumor cell survival in certain types of cancers. How cell lineage restricted genes specifically influence metastatic progression is poorly defined. In lung cancers, we uncovered an alveolar cell-selective transcriptional program that preferentially correlates with lung adenocarcinoma metastasis. This program is required for epithelial specification in the distal airways and is partially regulated by the lineage transcription factors GATA6 and HOPX. These factors cooperatively restrain the metastatic competence of adenocarcinoma cells, without affecting their survival, through the modulation of alveologenic and invasogenic target genes. Thus, GATA6 and HOPX are critical nodes in a lineage-selective pathway that directly links alveolar cell fate with metastasis suppresion in the lung adenocarcinoma subtype. mRNA profiles of human lung Adenocarcinoma PC9 cell lines infected with lentivirus harboring shRNA of control (Arab1) and shRNA of both GATA6 and HOPX were generated by deep sequencing, in triplicate, using Illumina HiSeq2000.
Project description:We profiled genome-wide gene expression of 170 individual mid-gestation (embryonic day 11.5) whole mouse embryos derived from a 2-generation interspecies mouse cross and asked to what extent genetic variation drives four important parameters of regulatory architecture: allele-specific expression (ASE), imprinting, trans-regulatory effects, and maternal effect. The inbred strain C57BL/6J and wild-derived inbred strain CAST/EiJ were used in reciprocal crosses to generate F1 embryos. F1 progeny were backcrossed to C57BL/6J in reciprocal crosses to generate 154 N2 embryos. We employed a backcross design, in which N2 offspring have genotypically distinct parents, to enable comparison of gene expression for offspring from each side of the reciprocal cross. Our findings demonstrate that genetic variation contributes to widespread gene expression differences during mammalian embryogenesis. Transcriptome analysis of E11.5 mouse embryos: 16 F1 embryos from reciprocally crossed C57BL/6J and CastEi/J parents; and 154 N2 embryos from reciprocal backcross of F1s to the C57BL/6J parent.
Project description:In this study, we describe the impact of genetic variation on transcript abundance in an F2 population of Arabidopsis thaliana. The RNA-seq resource generated by this study is suitable for expression quantitative trait locus (eQTL) mapping. From the aligned RNA-seq reads, and available genomic data for each of the parents of the cross, we imputed the genomes of each F2 individual (to allow genetic mapping of RNA abundance traits; briefly, genetic differences in aligned RNA-seq reads were used to impute each F2 genome). Our results show that heritable differences on gene expression can be detected using F2 populations (that is, single F2 plants), and shed light on the control of expression differences among strains of this reference plant.