Unknown

Dataset Information

0

Anchored Cu single atoms on porous g-C3N4 for superior photocatalytic H2 evolution from water splitting.


ABSTRACT: One of the most promising strategies for producing hydrogen is photocatalytic water splitting, in which the photocatalyst is a key component. Among many semiconductor photocatalysts, g-C3N4 has attracted great attention due to its narrow band gap, excellent stability and low cost. However, practical application is limited by its poor intrinsic activity. In this work, a high-performance porous g-C3N4 (PCN) photocatalyst with anchored Cu single atoms (CuSAs) was synthesized by a one-step co-heating approach. The obtained Cu1.5-PCN displays an excellent hydrogen evolution rate (HER) of 2142.4 μmol h-1 g-1 under visible light (=420 nm), which is around 15 and 109 times higher than those of PCN and bulk g-C3N4, respectively. In addition, it also shows good stability during H2 evolution. The results of experimental research and DFT simulations indicate that the single Cu ions formed bonds with the N-ring and these remain stable. Meanwhile, the special electronic structure of the Cu-N charge bridge extends the light absorption band to the visible-light region (380-700 nm). This high-performance and low-cost photocatalyst has great potential in solar energy conversion.

SUBMITTER: Zhou T 

PROVIDER: S-EPMC10020988 | biostudies-literature | 2023 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Anchored Cu single atoms on porous g-C<sub>3</sub>N<sub>4</sub> for superior photocatalytic H<sub>2</sub> evolution from water splitting.

Zhou Tong T   Wei Haitang H   Xiao Bin B   Lv Tianping T   Duan Liangfei L   Lu Qingjie Q   Zhang Jin J   Zhang Yumin Y   Liu Qingju Q  

RSC advances 20230317 13


One of the most promising strategies for producing hydrogen is photocatalytic water splitting, in which the photocatalyst is a key component. Among many semiconductor photocatalysts, g-C<sub>3</sub>N<sub>4</sub> has attracted great attention due to its narrow band gap, excellent stability and low cost. However, practical application is limited by its poor intrinsic activity. In this work, a high-performance porous g-C<sub>3</sub>N<sub>4</sub> (PCN) photocatalyst with anchored Cu single atoms (Cu  ...[more]

Similar Datasets

| S-EPMC10442768 | biostudies-literature
| S-EPMC9687292 | biostudies-literature
| S-EPMC10018648 | biostudies-literature
| S-EPMC9782857 | biostudies-literature
| S-EPMC10103745 | biostudies-literature
| S-EPMC10246652 | biostudies-literature