Ontology highlight
ABSTRACT:
SUBMITTER: Golob JL
PROVIDER: S-EPMC10029035 | biostudies-literature | 2023 Apr
REPOSITORIES: biostudies-literature
Golob Jonathan L JL Oskotsky Tomiko T TT Tang Alice S AS Roldan Alennie A Chung Verena V Ha Connie W Y CWY Wong Ronald J RJ Flynn Kaitlin J KJ Parraga-Leo Antonio A Wibrand Camilla C Minot Samuel S SS Andreoletti Gaia G Kosti Idit I Bletz Julie J Nelson Amber A Gao Jifan J Wei Zhoujingpeng Z Chen Guanhua G Tang Zheng-Zheng ZZ Novielli Pierfrancesco P Romano Donato D Pantaleo Ester E Amoroso Nicola N Monaco Alfonso A Vacca Mirco M De Angelis Maria M Bellotti Roberto R Tangaro Sabina S Kuntzleman Abigail A Bigcraft Isaac I Techtmann Stephen S Bae Daehun D Kim Eunyoung E Jeon Jongbum J Joe Soobok S Theis Kevin R KR Ng Sherrianne S Lee Li Yun S YS Diaz-Gimeno Patricia P Bennett Phillip R PR MacIntyre David A DA Stolovitzky Gustavo G Lynch Susan V SV Albrecht Jake J Gomez-Lopez Nardhy N Romero Roberto R Stevenson David K DK Aghaeepour Nima N Tarca Adi L AL Costello James C JC Sirota Marina M
medRxiv : the preprint server for health sciences 20230411
Globally, every year about 11% of infants are born preterm, defined as a birth prior to 37 weeks of gestation, with significant and lingering health consequences. Multiple studies have related the vaginal microbiome to preterm birth. We present a crowdsourcing approach to predict: (a) preterm or (b) early preterm birth from 9 publicly available vaginal microbiome studies representing 3,578 samples from 1,268 pregnant individuals, aggregated from raw sequences via an open-source tool, MaLiAmPi. W ...[more]