Ontology highlight
ABSTRACT:
SUBMITTER: Sieberts SK
PROVIDER: S-EPMC7979931 | biostudies-literature | 2021 Mar
REPOSITORIES: biostudies-literature
Sieberts Solveig K SK Schaff Jennifer J Duda Marlena M Pataki Bálint Ármin BÁ Sun Ming M Snyder Phil P Daneault Jean-Francois JF Parisi Federico F Costante Gianluca G Rubin Udi U Banda Peter P Chae Yooree Y Chaibub Neto Elias E Dorsey E Ray ER Aydın Zafer Z Chen Aipeng A Elo Laura L LL Espino Carlos C Glaab Enrico E Goan Ethan E Golabchi Fatemeh Noushin FN Görmez Yasin Y Jaakkola Maria K MK Jonnagaddala Jitendra J Klén Riku R Li Dongmei D McDaniel Christian C Perrin Dimitri D Perumal Thanneer M TM Rad Nastaran Mohammadian NM Rainaldi Erin E Sapienza Stefano S Schwab Patrick P Shokhirev Nikolai N Venäläinen Mikko S MS Vergara-Diaz Gloria G Zhang Yuqian Y Wang Yuanjia Y Guan Yuanfang Y Brunner Daniela D Bonato Paolo P Mangravite Lara M LM Omberg Larsson L
NPJ digital medicine 20210319 1
Consumer wearables and sensors are a rich source of data about patients' daily disease and symptom burden, particularly in the case of movement disorders like Parkinson's disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approaches, and validating these biomarkers requires sufficient data and unbiased evaluation methods. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from acc ...[more]