Ontology highlight
ABSTRACT: Purpose
Personalized synthetic MRI (syn-MRI) uses MR images of an individual subject acquired at a few design parameters (echo time, repetition time, flip angle) to obtain underlying parametric (ρ,T1,T2)$$ \left(\rho, {\mathrm{T}}_1,{\mathrm{T}}_2\right) $$ maps, from where MR images of that individual at other design parameter settings are synthesized. However, classical methods that use least-squares (LS) or maximum likelihood estimators (MLE) are unsatisfactory at higher noise levels because the underlying inverse problem is ill-posed. This article provides a pipeline to enhance the synthesis of such images in three-dimensional (3D) using a deep learning (DL) neural network architecture for spatial regularization in a personalized setting where having more than a few training images is impractical.Methods
Our DL enhancements employ a Deep Image Prior (DIP) with a U-net type denoising architecture that includes situations with minimal training data, such as personalized syn-MRI. We provide a general workflow for syn-MRI from three or more training images. Our workflow, called DIPsyn-MRI, uses DIP to enhance training images, then obtains parametric images using LS or MLE before synthesizing images at desired design parameter settings. DIPsyn-MRI is implemented in our publicly available Python package DeepSynMRI available at: https://github.com/StatPal/DeepSynMRI.Results
We demonstrate feasibility and improved performance of DIPsyn-MRI on 3D datasets acquired using the Brainweb interface for spin-echo and FLASH imaging sequences, at different noise levels. Our DL enhancements improve syn-MRI in the presence of different intensity nonuniformity levels of the magnetic field, for all but very low noise levels.Conclusion
This article provides recipes and software to realistically facilitate DL-enhanced personalized syn-MRI.
SUBMITTER: Pal S
PROVIDER: S-EPMC10100029 | biostudies-literature | 2023 Apr
REPOSITORIES: biostudies-literature
Pal Subrata S Dutta Somak S Maitra Ranjan R
Magnetic resonance in medicine 20221124 4
<h4>Purpose</h4>Personalized synthetic MRI (syn-MRI) uses MR images of an individual subject acquired at a few design parameters (echo time, repetition time, flip angle) to obtain underlying parametric ( ρ , T 1 , T 2 ) $$ \left(\rho, {\mathrm{T}}_1,{\mathrm{T}}_2\right) $$ maps, from where MR images of that individual at other design parameter settings are synthesized. However, classical methods that use least-squares (LS) or maximum likelihood estimators (MLE) are unsatisfactory at higher ...[more]