Ontology highlight
ABSTRACT:
SUBMITTER: Pieszko K
PROVIDER: S-EPMC10151323 | biostudies-literature | 2023 May
REPOSITORIES: biostudies-literature
Pieszko Konrad K Shanbhag Aakash D AD Singh Ananya A Hauser M Timothy MT Miller Robert J H RJH Liang Joanna X JX Motwani Manish M Kwieciński Jacek J Sharir Tali T Einstein Andrew J AJ Fish Mathews B MB Ruddy Terrence D TD Kaufmann Philipp A PA Sinusas Albert J AJ Miller Edward J EJ Bateman Timothy M TM Dorbala Sharmila S Di Carli Marcelo M Berman Daniel S DS Dey Damini D Slomka Piotr J PJ
NPJ digital medicine 20230501 1
Standard clinical interpretation of myocardial perfusion imaging (MPI) has proven prognostic value for predicting major adverse cardiovascular events (MACE). However, personalizing predictions to a specific event type and time interval is more challenging. We demonstrate an explainable deep learning model that predicts the time-specific risk separately for all-cause death, acute coronary syndrome (ACS), and revascularization directly from MPI and 15 clinical features. We train and test the model ...[more]