Unknown

Dataset Information

0

Establishment of a Perfusion Process with Antibody-Producing CHO Cells Using a 3D-Printed Microfluidic Spiral Separator with Web-Based Flow Control.


ABSTRACT: Monoclonal antibodies are increasingly dominating the market for human therapeutic and diagnostic agents. For this reason, continuous methods-such as perfusion processes-are being explored and optimized in an ongoing effort to increase product yields. Unfortunately, many established cell retention devices-such as tangential flow filtration-rely on membranes that are prone to clogging, fouling, and undesirable product retention at high cell densities. To circumvent these problems, in this work, we have developed a 3D-printed microfluidic spiral separator for cell retention, which can readily be adapted and replaced according to process conditions (i.e., a plug-and-play system) due to the fast and flexible 3D printing technique. In addition, this system was also expanded to include automatic flushing, web-based control, and notification via a cellphone application. This set-up constitutes a proof of concept that was successful at inducing a stable process operation at a viable cell concentration of 10-17 × 106 cells/mL in a hybrid mode (with alternating cell retention and cell bleed phases) while significantly reducing both shear stress and channel blockage. In addition to increasing efficiency to nearly 100%, this microfluidic device also improved production conditions by successfully separating dead cells and cell debris and increasing cell viability within the bioreactor.

SUBMITTER: Schellenberg J 

PROVIDER: S-EPMC10295792 | biostudies-literature | 2023 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Establishment of a Perfusion Process with Antibody-Producing CHO Cells Using a 3D-Printed Microfluidic Spiral Separator with Web-Based Flow Control.

Schellenberg Jana J   Dehne Michaela M   Lange Ferdinand F   Scheper Thomas T   Solle Dörte D   Bahnemann Janina J  

Bioengineering (Basel, Switzerland) 20230528 6


Monoclonal antibodies are increasingly dominating the market for human therapeutic and diagnostic agents. For this reason, continuous methods-such as perfusion processes-are being explored and optimized in an ongoing effort to increase product yields. Unfortunately, many established cell retention devices-such as tangential flow filtration-rely on membranes that are prone to clogging, fouling, and undesirable product retention at high cell densities. To circumvent these problems, in this work, w  ...[more]

Similar Datasets

| S-EPMC8470376 | biostudies-literature
| S-EPMC10222968 | biostudies-literature
| S-EPMC10378615 | biostudies-literature
| S-EPMC8757790 | biostudies-literature
| S-EPMC5876325 | biostudies-literature
2018-07-04 | PXD008760 | Pride
| S-EPMC4382387 | biostudies-literature
| S-EPMC6054653 | biostudies-literature
| S-EPMC8921237 | biostudies-literature
| S-EPMC8399612 | biostudies-literature