Unknown

Dataset Information

0

Coating Bioactive Microcapsules with Tannic Acid Enhances the Phenotype of the Encapsulated Pluripotent Stem Cells.


ABSTRACT: Human pluripotent stem cells (hPSCs) may be differentiated into any adult cell type and therefore hold incredible promise for cell therapeutics and disease modeling. There is increasing interest in three-dimensional (3D) hPSC culture because of improved differentiation outcomes and potential for scale up. Our team has recently described bioactive heparin (Hep)-containing core-shell microcapsules that promote rapid aggregation of stem cells into spheroids and may also be loaded with growth factors for the local and sustained delivery to the encapsulated cells. In this study, we explored the possibility of further modulating bioactivity of microcapsules through the use of an ultrathin coating composed of tannic acid (TA). Deposition of the TA film onto model substrates functionalized with Hep and poly(ethylene glycol) was characterized by ellipsometry and atomic force microscopy. Furthermore, the presence of the TA coating was observed to increase the amount of basic fibroblast growth factor (bFGF) incorporation by up to twofold and to extend its release from 5 to 7 days. Most significantly, TA-microcapsules loaded with bFGF induced higher levels of pluripotency expression compared to uncoated microcapsules containing bFGF. Engineered microcapsules described here represent a new stem cell culture approach that enables 3D cultivation and relies on local delivery of inductive cues.

SUBMITTER: Choi D 

PROVIDER: S-EPMC10314364 | biostudies-literature | 2022 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Coating Bioactive Microcapsules with Tannic Acid Enhances the Phenotype of the Encapsulated Pluripotent Stem Cells.

Choi Daheui D   Gwon Kihak K   Hong Hye Jin HJ   Baskaran Harihara H   Calvo-Lozano Olalla O   Gonzalez-Suarez Alan M AM   Park Kyungtae K   de Hoyos-Vega Jose M JM   Lechuga Laura M LM   Hong Jinkee J   Stybayeva Gulnaz G   Revzin Alexander A  

ACS applied materials & interfaces 20220604 23


Human pluripotent stem cells (hPSCs) may be differentiated into any adult cell type and therefore hold incredible promise for cell therapeutics and disease modeling. There is increasing interest in three-dimensional (3D) hPSC culture because of improved differentiation outcomes and potential for scale up. Our team has recently described bioactive heparin (Hep)-containing core-shell microcapsules that promote rapid aggregation of stem cells into spheroids and may also be loaded with growth factor  ...[more]

Similar Datasets

| S-EPMC6600752 | biostudies-literature
| S-EPMC6600752 | biostudies-literature
| S-EPMC5344998 | biostudies-literature
| S-EPMC8156842 | biostudies-literature
2017-10-30 | E-MTAB-5786 | biostudies-arrayexpress
| S-EPMC11846942 | biostudies-literature
| S-EPMC6170834 | biostudies-literature
| S-EPMC4402499 | biostudies-literature
| S-EPMC8012419 | biostudies-literature
| S-EPMC6726983 | biostudies-literature