Project description:Multiple myeloma (MM) is a complex hematologic malignancy characterized by the uncontrolled proliferation of clonal plasma cells in the bone marrow that secrete large amounts of immunoglobulins and other non-functional proteins. Despite decades of progress and several landmark therapeutic advancements, MM remains incurable in most cases. Standard of care frontline therapies have limited durable efficacy, with the majority of patients eventually relapsing, either early or later. Induced drug resistance via up-modulations of signaling cascades that circumvent the effect of drugs and the emergence of genetically heterogeneous sub-clones are the major causes of the relapsed-refractory state of MM. Cytopenias from cumulative treatment toxicity and disease refractoriness limit therapeutic options, hence creating an urgent need for innovative approaches effective against highly heterogeneous myeloma cell populations. Here, we present a comprehensive overview of the current and future treatment paradigm of MM, and highlight the gaps in therapeutic translations of recent advances in targeted therapy and immunotherapy. We also discuss the therapeutic potential of emerging preclinical research in multiple myeloma.
Project description:Whereas the treatment of MM was dependent solely on alkylating agents and corticosteroids during the prior three decades, the landscape of therapeutic measures to treat the disease began to expand enormously early in the current century. The introduction of new classes of small-molecule drugs, such as proteasome blockers (bortezomib and carfilzomib), immunomodulators (lenalidomide and pomalidomide), nuclear export inhibitors (selinexor), and histone deacetylase blockers (panobinostat), as well as the application of autologous stem cell transplantation (ASCT), resulted in a seismic shift in how the disease is treated. The picture changed dramatically once again starting with the 2015 FDA approval of two monoclonal antibodies (mAbs) - the anti-CD38 daratumumab and the anti-SLAMF7 elotuzumab. Daratumumab, in particular, has had a great impact on MM therapy and today is often included in various regimens to treat the disease, both in newly diagnosed cases and in the relapse/refractory setting. Recently, other immunotherapies have been added to the arsenal of drugs available to fight this malignancy. These include isatuximab (also anti-CD38) and, in the past year, the antibody-drug conjugate (ADC) belantamab mafodotin and the chimeric antigen receptor (CAR) T-cell product idecabtagene vicleucel (ide-cel). While the accumulated benefits of these newer agents have resulted in a doubling of the disease's five-year survival rate to more than 5 years and improved quality of life, the disease remains incurable. Almost without exception patients experience relapse and/or become refractory to the drugs used, making the search for innovative therapies all the more essential. This review covers the current scope of anti-myeloma immunotherapeutic agents, both those in clinical use and on the horizon, including naked mAbs, ADCs, bi- and multi-targeted mAbs, and CAR T-cells. Emphasis is placed on the benefits of each along with the challenges that need to be overcome if MM is to be considered curable in the future.
Project description:Although multiple myeloma (MM) remains an incurable disease, the advent of novel treatment paradigms has improved survival outcomes in the past two decades. This includes widespread use of high-dose chemotherapy with autologous stem cell transplantation (HDT-ASCT) and the development of the novel agents thalidomide, lenalidomide and bortezomib. The efficacy and tolerability of these novel agents have allowed for the exploration of continuous therapy approaches. Maintenance therapy after HDT-ASCT, for example, may help prolong progression-free survival by providing sustained control of residual disease. Trials are also under way to evaluate lenalidomide in patients with high-risk smoldering MM, with the aim of delaying progression to symptomatic MM. Other research is focusing on improving HDT-ASCT protocols and integrating novel agents, such as bortezomib, as an induction or consolidation therapy. Despite these advances, more effective strategies are needed, particularly for the management of older, less fit patients who are ineligible for HDT-ASCT. Preliminary results on the use of lenalidomide maintenance therapy in elderly patients are encouraging. Taken together, these observations indicate that in this era of novel agents, optimal treatment of MM requires a long-term perspective that focuses on providing sustained disease control while maintaining quality of life.
Project description:In this review article, we summarize the latest data on antibody-drug conjugates, bispecific T-cell-engaging antibodies, and chimeric antigen receptor T cells in the treatment of multiple myeloma. We discuss the pivotal questions to be addressed as these new immunotherapies become standard agents in the management of multiple myeloma. We also focus on the selection of patients for these therapies and speculate as to how best to individualize treatment approaches. We see these novel immunotherapies as representing a paradigm shift. However, despite the promising preliminary data, many open issues remain to be evaluated in future trials.
Project description:Immunological tolerance of myeloma cells represents a critical obstacle in achieving long-term disease-free survival for multiple myeloma (MM) patients. Over the past two decades, remarkable preclinical efforts to understand MM biology have led to the clinical approval of several targeted and immunotherapeutic agents. Among them, it is now clear that chemotherapy can also make cancer cells "visible" to the immune system and thus reactivate anti-tumor immunity. This knowledge represents an important resource in the treatment paradigm of MM, whereas immune dysfunction constitutes a clear obstacle to the cure of the disease. In this review, we highlight the importance of defining the immunological effects of chemotherapy in MM with the goal of enhancing the clinical management of patients. This area of investigation will open new avenues of research to identify novel immunogenic anti-MM agents and inform the optimal integration of chemotherapy with immunotherapy.
Project description:Assessment of minimal residual disease (MRD) is becoming a standard diagnostic tool for curable hematological malignancies such as chronic and acute myeloid leukemia. Multiple myeloma (MM) remains an incurable disease, as a major portion of patients even in complete response eventually relapse, suggesting that residual disease remains. Over the past decade, the treatment landscape of MM has radically changed with the introduction of new effective drugs and the availability of immunotherapy, including targeted antibodies and adoptive cell therapy. Therefore, conventional serological and morphological techniques have become suboptimal for the evaluation of depth of response. Recently, the International Myeloma Working Group (IMWG) introduced the definition of MRD negativity as the absence of clonal Plasma cells (PC) with a minimum sensitivity of <10-5 either by next-generation sequencing (NGS) using the LymphoSIGHT platform (Sequenta/Adaptative) or by next-generation flow cytometry (NGF) using EuroFlow approaches as the reference methods. While the definition of the LymphoSIGHT platform (Sequenta/Adaptive) as the standard method derives from its large use and validation in clinical studies on the prognostic value of NGS-based MRD, other commercially available options exist. Recently, the LymphoTrack assay has been evaluated in MM, demonstrating a sensitivity level of 10-5, hence qualifying as an alternative effective tool for MRD monitoring in MM. Here, we will review state-of-the-art methods for MRD assessment by NGS. We will summarize how MRD testing supports clinical trials as a useful tool in dynamic risk-adapted therapy. Finally, we will also discuss future promise and challenges of NGS-based MRD determination for clinical decision-making. In addition, we will present our real-life single-center experience with the commercially available NGS strategy LymphoTrack-MiSeq. Even with the limitation of a limited number of patients, our results confirm the LymphoTrack-MiSeq platform as a cost-effective, readily available, and standardized workflow with a sensitivity of 10-5. Our real-life data also confirm that achieving MRD negativity is an important prognostic factor in MM.
Project description:2015 was a groundbreaking year for the multiple myeloma community partly due to the breakthrough approval of the first two monoclonal antibodies in the treatment for patients with relapsed and refractory disease. Despite early disappointments, monoclonal antibodies targeting CD38 (daratumumab) and signaling lymphocytic activation molecule F7 (SLAMF7) (elotuzumab) have become available for patients with multiple myeloma in the same year. Specifically, phase 3 clinical trials of combination therapies incorporating daratumumab or elotuzumab indicate both efficacy and a very favorable toxicity profile. These therapeutic monoclonal antibodies for multiple myeloma can kill target cells via antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent phagocytosis, as well as by direct blockade of signaling cascades. In addition, their immunomodulatory effects may simultaneously inhibit the immunosuppressive bone marrow microenvironment and restore the key function of immune effector cells. In this review, we focus on monoclonal antibodies that have shown clinical efficacy or promising preclinical anti-multiple myeloma activities that warrant further clinical development. We summarize mechanisms that account for the in vitro and in vivo anti-myeloma effects of these monoclonal antibodies, as well as relevant preclinical and clinical results. Monoclonal antibody-based immunotherapies have already and will continue to transform the treatment landscape in multiple myeloma.
Project description:Multiple Myeloma (MM), a clonal malignancy of antibody-producing plasma cells, is the second most common hematologic malignancy and results in significant patient morbidity and mortality. The high degree of immune dysregulation in MM, including T cell imbalances and up-regulation of immunosuppressive checkpoint proteins and myeloid derived suppressor cells, allows this malignancy to escape from host immune control. Despite advances in the therapeutic landscape of MM over the last decade, including the introduction of immunomodulatory drugs, the prognosis for this disease is poor, with less than 50% of patients surviving 5 years. Thus, novel treatment strategies are required. Oncolytic viruses (OV) are a promising new class of therapeutics that rely on tumour specific oncolysis and the generation of a potent adaptive anti-tumour immune response for efficacy. To date, a number of OV have shown efficacy in pre-clinical studies of MM with three reaching early phase clinical trials. OVs represent a rational therapeutic strategy for MM based on (1) their tumour tropism, (2) their ability to potentiate anti-tumour immunity and (3) their ability to be rationally combined with other immunotherapeutic agents to achieve a more robust clinical response.
Project description:Multiple myeloma (MM) is an incurable malignancy of plasma cells that grow within a permissive bone marrow microenvironment (BMM). The bone marrow milieu supports the malignant transformation both by promoting uncontrolled proliferation and resistance to cell death in MM cells, and by hampering the immune response against the tumor clone. Hence, it is expected that restoring host anti-MM immunity may provide therapeutic benefit for MM patients. Already several immunotherapeutic approaches have shown promising results in the clinical setting. In this review, we outline recent findings demonstrating the potential advantages of targeting the immunosuppressive bone marrow niche to restore effective anti-MM immunity. We discuss different approaches aiming to boost the effector function of T cells and/or exploit innate or adaptive immunity, and highlight novel therapeutic opportunities to increase the immunogenicity of the MM clone. We also discuss the main challenges that hamper the efficacy of immune-based approaches, including intrinsic resistance of MM cells to activated immune-effectors, as well as the protective role of the immune-suppressive and inflammatory bone marrow milieu. Targeting mechanisms to convert the immunologically "cold" to "hot" MM BMM may induce durable immune responses, which in turn may result in long-lasting clinical benefit, even in patient subgroups with high-risk features and poor survival.
Project description:Chimeric antigen receptor (CAR) T cell therapy has emerged as a groundbreaking immunotherapy, demonstrating significant efficacy in treating B cell malignancies. In the context of multiple myeloma (MM), B cell maturation antigen (BCMA) has been identified as a critical target, driving the development of CAR T cell therapies designed to address this plasma cell cancer. Various CAR designs, utilizing different BCMA recognition domains, have yielded promising clinical results, leading to the approval of two BCMA-targeting CAR T cell therapies by the US Food and Drug Administration (FDA) for the treatment of MM. This review uniquely examines the BCMA CAR T cell landscape, emphasizing the design of recognition domains, clinical efficacy, and patient outcomes. It critically addresses emerging challenges such as antigen escape and toxicity profiles, which have surfaced alongside therapeutic advances. Moreover, the review spotlights cutting-edge developments, including dual-targeting CAR T strategies, advancements in CAR T cell manufacturing, and innovative allogeneic CAR T approaches utilizing healthy donor cells. By detailing both the breakthroughs and ongoing challenges in BCMA CAR T cell therapy, this review offers a comprehensive perspective on the current state and future possibilities of CAR T cell therapy for MM and its expanding role in treating hematologic malignancies and beyond.