Unknown

Dataset Information

0

Microfluidic intestinal organoid-on-a-chip uncovers therapeutic targets by recapitulating oxygen dynamics of intestinal IR injury.


ABSTRACT: Increasing evidence demonstrates that mammals have different reactions to hypoxia with varied oxygen dynamic patterns. It takes ∼24 h for tri-gas incubator to achieve steady cell hypoxia, which fails to recapitulate ultrafast oxygen dynamics of intestinal ischemia/reperfusion (IR) injury. Inspired from the structure of native intestinal villi, we engineered an intestinal organoid chip embedded with engineered artificial microvessels based on co-axial microfluidic technology by using pH-responsive ZIF-8/sodium alginate scaffold. The chip was featured on: (i) eight times the oxygen exchange efficiency compared with the conventional device, tri-gas incubator, (ii) implantation of intestinal organoid reproducing all types of intestinal epithelial cells, and (iii) bio-responsiveness to hypoxia and reoxygenation (HR) by presenting metabolism disorder, inflammatory reaction, and cell apoptosis. Strikingly, it was found for the first time that Olfactomedin 4 (Olfm4) was the most significantly down-regulated gene under a rapid HR condition by sequencing the RNA from the organoids. Mechanistically, OLFM4 played protective functions on HR-induced cell inflammation and tissue damage by inhibiting the NF-kappa B signaling activation, thus it could be used as a therapeutic target. Altogether, this study overcomes the issue of mismatched oxygen dynamics between in vitro and in vivo, and sets an example of next-generation multisystem-interactive organoid chip for finding precise therapeutic targets of IR injury.

SUBMITTER: Huang J 

PROVIDER: S-EPMC10391666 | biostudies-literature | 2023 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Microfluidic intestinal organoid-on-a-chip uncovers therapeutic targets by recapitulating oxygen dynamics of intestinal IR injury.

Huang Jinjian J   Xu Ziyan Z   Jiao Jiao J   Li Zongan Z   Li Sicheng S   Liu Ye Y   Li Ze Z   Qu Guiwen G   Wu Jie J   Zhao Yun Y   Chen Kang K   Li Jieshou J   Pan Yichang Y   Wu Xiuwen X   Ren Jianan J  

Bioactive materials 20230721


Increasing evidence demonstrates that mammals have different reactions to hypoxia with varied oxygen dynamic patterns. It takes ∼24 h for tri-gas incubator to achieve steady cell hypoxia, which fails to recapitulate ultrafast oxygen dynamics of intestinal ischemia/reperfusion (IR) injury. Inspired from the structure of native intestinal villi, we engineered an intestinal organoid chip embedded with engineered artificial microvessels based on co-axial microfluidic technology by using pH-responsiv  ...[more]

Similar Datasets

| S-EPMC8327675 | biostudies-literature
| S-EPMC7175276 | biostudies-literature
| S-EPMC11579110 | biostudies-literature
| S-EPMC11795259 | biostudies-literature
| S-EPMC3683774 | biostudies-literature
| S-EPMC7408321 | biostudies-literature
| S-EPMC9359751 | biostudies-literature
| S-EPMC9114673 | biostudies-literature
| S-EPMC11655692 | biostudies-literature
| S-EPMC7877197 | biostudies-literature