Ontology highlight
ABSTRACT: Introduction
Leprosy reactions (LR) are severe episodes of intense activation of the host inflammatory response of uncertain etiology, today the leading cause of permanent nerve damage in leprosy patients. Several genetic and non-genetic risk factors for LR have been described; however, there are limited attempts to combine this information to estimate the risk of a leprosy patient developing LR. Here we present an artificial intelligence (AI)-based system that can assess LR risk using clinical, demographic, and genetic data.Methods
The study includes four datasets from different regions of Brazil, totalizing 1,450 leprosy patients followed prospectively for at least 2 years to assess the occurrence of LR. Data mining using WEKA software was performed following a two-step protocol to select the variables included in the AI system, based on Bayesian Networks, and developed using the NETICA software.Results
Analysis of the complete database resulted in a system able to estimate LR risk with 82.7% accuracy, 79.3% sensitivity, and 86.2% specificity. When using only databases for which host genetic information associated with LR was included, the performance increased to 87.7% accuracy, 85.7% sensitivity, and 89.4% specificity.Conclusion
We produced an easy-to-use, online, free-access system that identifies leprosy patients at risk of developing LR. Risk assessment of LR for individual patients may detect candidates for close monitoring, with a potentially positive impact on the prevention of permanent disabilities, the quality of life of the patients, and upon leprosy control programs.
SUBMITTER: de Andrade Rodrigues RS
PROVIDER: S-EPMC10411956 | biostudies-literature | 2023
REPOSITORIES: biostudies-literature
de Andrade Rodrigues Rafael Saraiva RS Heise Eduardo Ferreira José EFJ Hartmann Luis Felipe LF Rocha Guilherme Eduardo GE Olandoski Marcia M de Araújo Stefani Mariane Martins MM Latini Ana Carla Pereira ACP Soares Cleverson Teixeira CT Belone Andrea A Rosa Patrícia Sammarco PS de Andrade Pontes Maria Araci MA de Sá Gonçalves Heitor H Cruz Rossilene R Penna Maria Lúcia Fernandes MLF Carvalho Deborah Ribeiro DR Fava Vinicius Medeiros VM Bührer-Sékula Samira S Penna Gerson Oliveira GO Moro Claudia Maria Cabral CMC Nievola Julio Cesar JC Mira Marcelo Távora MT
Frontiers in medicine 20230726
<h4>Introduction</h4>Leprosy reactions (LR) are severe episodes of intense activation of the host inflammatory response of uncertain etiology, today the leading cause of permanent nerve damage in leprosy patients. Several genetic and non-genetic risk factors for LR have been described; however, there are limited attempts to combine this information to estimate the risk of a leprosy patient developing LR. Here we present an artificial intelligence (AI)-based system that can assess LR risk using c ...[more]