Unknown

Dataset Information

0

Auditory white noise exposure results in intrinsic cortical excitability changes.


ABSTRACT: Cortical excitability is commonly measured by applying magnetic stimulation in combination with measuring behavioral response. This measure has, however, some shortcomings including spatial limitation to the primary motor cortex and not accounting for intrinsic excitability fluctuations. Here, we use a measure for intrinsic excitability based on phase synchronization previously validated for epilepsy. We apply this measure in 30 healthy participants' magnetoencephalography (MEG) recordings during the exposure of auditory white noise, a stimulus that has been suggested to modify cortical excitability. Using cortical parcellation of the MEG source data, we could find a specific pattern of increased and decreased excitability while participants are exposed to white noise vs. silence. Specifically, excitability during white noise exposure decreases in the frontal lobe and increases in the temporal lobe. This study thus adds to the understanding of cortical excitability changes due to specific environmental stimuli as well as the spatial extent of these effects.

SUBMITTER: Schuler AL 

PROVIDER: S-EPMC10415920 | biostudies-literature | 2023 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Auditory white noise exposure results in intrinsic cortical excitability changes.

Schuler Anna-Lisa AL   Brkić Diandra D   Ferrazzi Giulio G   Arcara Giorgio G   Marinazzo Daniele D   Pellegrino Giovanni G  

iScience 20230717 8


Cortical excitability is commonly measured by applying magnetic stimulation in combination with measuring behavioral response. This measure has, however, some shortcomings including spatial limitation to the primary motor cortex and not accounting for intrinsic excitability fluctuations. Here, we use a measure for intrinsic excitability based on phase synchronization previously validated for epilepsy. We apply this measure in 30 healthy participants' magnetoencephalography (MEG) recordings durin  ...[more]

Similar Datasets

| S-EPMC5954103 | biostudies-literature
| S-EPMC7839024 | biostudies-literature
| S-EPMC7326484 | biostudies-literature
| S-EPMC2997032 | biostudies-literature
| S-EPMC9338990 | biostudies-literature
| S-EPMC7394914 | biostudies-literature
| S-EPMC7434834 | biostudies-literature
| S-EPMC9354017 | biostudies-literature
| S-EPMC4872406 | biostudies-literature
| S-EPMC6484778 | biostudies-literature