Project description:Drug reaction with eosinophilia and systemic symptoms (DRESS) is a cutaneous drug hypersensitivity reaction (DHR) with internal organ involvement and associated mortality, often caused by antibiotics. Despite the risk of severe systemic involvement, no robust diagnostic test to identify causative drug exists. To identify potential biomarkers, we evaluated changes in gene expression following exposure of PBMCs to a culprit antibiotic (cefoxitin, teicoplanin, vancomycin, dapsone) and developed a molecular assay test (MAT).
Project description:Minocycline is a tetracycline commonly used for several dermatological diseases. Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome is a rare but severe adverse event which can be caused by minocycline. An 18-year-old male patient developed fever, acute rash, pharyngeal pain, lymphadenopathy, hematologic abnormalities, increased creatinine level, elevated liver enzyme levels, and splenomegaly 4 weeks after the oral treatment of minocycline, 100 mg daily, for acne. Once diagnosed with DRESS syndrome, intravenous methylprednisolone was applied and his clinical manifestations and laboratory results remarkably improved. Then, a total of 13 DRESS syndrome cases induced by minocycline were reviewed and their clinical characteristics were summarized. In these cases, only two patient (15.4%) was present with pharynx involved. In conclusion, we reported a rare minocycline-induced DRESS syndrome who developed fever, eosinophilia, acute rash, pharyngitis, lymphadenopathy, acute kidney injury, hepatitis, and splenomegaly. Our report provides detailed clinical features of minocycline-induced DRESS syndrome, which helps us further understand this severe adverse event.
Project description:Drug reaction with eosinophilia and systemic symptoms (DRESS), also known as drug-induced hypersensitivity syndrome, is a severe type of cutaneous drug-induced eruption. DRESS may be a difficult disease to diagnose since the symptoms mimic those of cutaneous and systemic infectious pathologies and can appear up to 3 months after the initial culprit drug exposure. The symptoms of DRESS syndrome include rash development after a minimum of 3 weeks after the onset of a new medication, associated with facial edema, lymphadenopathy, and fever. Biological findings include liver abnormalities, leukocytosis, eosinophilia, atypical lymphocytosis, and reactivation of certain human herpes viruses. In DRESS, liver, kidneys, and lungs are frequently involved in disease evolution. Patients with serious systemic involvement are treated with oral corticosteroids, and full recovery is achieved in the majority of cases. DRESS is a rare disease, and little is known about factors that predict its occurrence. The key features of this reaction are eosinophil involvement, the role of the culprit drug, and virus reactivation that trigger an inappropriate systemic immune response in DRESS patients. Interestingly, it was evidenced that at-risk individuals within a genetically restricted population shared a particular HLA loci. In this respect, a limited number of well-known drugs were able to induce DRESS. This review describes the up-to-date advances in our understanding of the pathogenesis of DRESS.
Project description:Drug reaction with eosinophilia and systemic symptoms (DRESS), also known as drug-induced hypersensitivity syndrome (DiHS), is a severe type of cutaneous adverse reaction. The gold standard therapy for DRESS involves the discontinuation of the culprit drug, supportive therapies, and administration of corticosteroids. However, in cases of primary treatment failure or suboptimal response, there arises an urgent need for alternative interventions. This review focuses on exploring alternative systemic therapies for patients with steroid-resistant DRESS, steroid-dependent DRESS, or refractory DRESS, encompassing immunosuppressive agents, intravenous immunoglobulin, plasmapheresis, biologics, and small molecule drugs, with an emphasis on their clinical efficacy and the underlying mechanisms in the treatment of DRESS. Furthermore, this review provides a summary of potential management strategies and laboratory workup during the treatment of DRESS.
Project description:BackgroundA drug reaction with eosinophilia and systemic symptoms (DRESS) is a severe T cell mediated hypersensitivity reaction. Relapses of symptoms in the recovery phase are frequent and linked to the reduction of the corticosteroid treatment, to viral reactivations or to the exposure to new drugs. Here, we analyzed, how often the exposure to new drugs leads to new sensitization or drug-related relapses without detectable sensitization.Methods46 patients with DRESS treated in the allergy division of the Inselspital, Bern University Hospital, were retrospectively assessed. Drug-related relapses were analyzed in terms of frequency and whether a possible sensitization evaluated by skin tests and/or lymphocyte transformation tests (LTT) to the new drugs was detectable. Furthermore, drug tolerance was evaluated in a subset of patients.Results56 relapses were observed in 27 of 46 patients with DRESS (58.7%). 33 (58.9%) of these relapses were associated with the use of new drugs, 30 drug-related relapses were evaluated by patch test and/or lymphocyte transformation test. In 8/30 (26.7%) drug-related relapses, a sensitization to the new drug was demonstrated, suggesting the emergence of a multiple drug hypersensitivity syndrome (MDH). 14 patients experienced 22 drug-related relapses without any detectable sensitization and only 1/6 patients developed new symptoms upon reexposure.ConclusionPatients with DRESS frequently suffered from drug related relapses. Half of the patients with drug-related relapses developed a MDH with proven sensitizations not only to the DRESS inducing drugs, but also to newly applied drugs. When not sensitized, drugs involved in drug related relapses could be reintroduced, if needed. Here, we propose a procedure for drug testing and future management of drug-related relapses in DRESS.
Project description:Alpelisib is a PIK3a inhibitor approved for the treatment of metastatic ER+ breast cancer in combination with fulvestrant. Although rash is a common side effect of this medication, we present the first case of drug reaction with eosinophilia and systemic symptoms (DRESS) upon initial exposure to alpelisib. Here we describe the clinical-pathological findings and management of our patient with alpelisib-induced life-threatening DRESS syndrome. The goal of this case report is to highlight association of alpelisib with DRESS syndrome, in clinical practice, so that alpelisib can be immediately stopped and treatment for this serious condition promptly initiated.
Project description:Background: Drug reaction with eosinophilia and systemic symptoms is a severe cutaneous reaction with a high mortality rate. It is challenging to diagnose due to its similar presentation to infectious disease syndromes, variation with the culprit drug, and lack of awareness. Methods: We searched PubMed, and Embase, for RegiSCAR-scored observational studies, the FDA Adverse Events Reporting System (FAERS) for adverse event reports, and the Allele Frequency Net Database (AFND) for HLA allele frequency. In our meta-analysis, we employed a random effects model to subgroup patients by ethnicity to determine the proportion of DRESS cases compared with various associated medications. Additionally, we identified a correlation between the proportion of cases and the presence of the HLA*A-32:01allele, which is suspected to predispose individuals to DRESS. Results: Twenty-one studies on 1949 DRESS cases in vancomycin and 2558 antimicrobial DRESS reports in the FAERS database were analyzed. Meta-analysis showed a 27% incidence of vancomycin-DRESS, with Caucasians having the highest proportion at 36%. The median latency for symptom onset was 21 days, with no female predisposition. The proportional incidence of vancomycin-DRESS did not correlate with the HLA-A*32:01 allele. The adjusted ROR for vancomycin was 2.40 compared to other antimicrobials, and the risk increased by 77% with concurrent antimicrobials. Piperacillin/tazobactam had a similar DRESS reporting risk at 0.95 (95%CI: 0.88-1.02). Conclusions: Vancomycin significantly contributes to the incidence of DRESS and is more closely related to ethnicity than to allele frequency, indicating that the HLA-A*32:01 allele may not be directly involved. Furthermore, the use of other antimicrobials can influence the reaction, underscoring the need to minimize antimicrobial use for better coverage.