Unknown

Dataset Information

0

Comparing Meta-Analyses with ChatGPT in the Evaluation of the Effectiveness and Tolerance of Systemic Therapies in Moderate-to-Severe Plaque Psoriasis.


ABSTRACT:

Background

Meta-analyses (MAs) and network meta-analyses (NMAs) are high-quality studies for assessing drug efficacy, but they are time-consuming and may be affected by biases. The capacity of artificial intelligence to aggregate huge amounts of information is emerging as particularly interesting for processing the volume of information needed to generate MAs. In this study, we analyzed whether the chatbot ChatGPT is able to summarize information in a useful fashion for providers and patients in a way that matches up with the results of MAs/NMAs.

Methods

We included 16 studies (13 NMAs and 3 MAs) that evaluate biologics (n = 6) and both biologic and systemic treatment (n = 10) for moderate-to-severe psoriasis, published between January 2021 and May 2023.

Results

The conclusions of the MAs/NMAs were compared to ChatGPT's answers to queries about the molecules evaluated in the selected MAs/NMAs. The reproducibility between the results of ChatGPT and the MAs/NMAs was random regarding drug safety. Regarding efficacy, ChatGPT reached the same conclusion as 5 out of the 16 studies (four out of four studies when three molecules were compared), gave acceptable answers in 7 out of 16 studies, and was inconclusive in 4 out of 16 studies.

Conclusions

ChatGPT can generate conclusions that are similar to MAs when the efficacy of fewer drugs is compared but is still unable to summarize information in a way that matches up to the results of MAs/NMAs when more than three molecules are compared.

SUBMITTER: Lam Hoai XL 

PROVIDER: S-EPMC10455399 | biostudies-literature | 2023 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Comparing Meta-Analyses with ChatGPT in the Evaluation of the Effectiveness and Tolerance of Systemic Therapies in Moderate-to-Severe Plaque Psoriasis.

Lam Hoai Xuân-Lan XL   Simonart Thierry T  

Journal of clinical medicine 20230820 16


<h4>Background</h4>Meta-analyses (MAs) and network meta-analyses (NMAs) are high-quality studies for assessing drug efficacy, but they are time-consuming and may be affected by biases. The capacity of artificial intelligence to aggregate huge amounts of information is emerging as particularly interesting for processing the volume of information needed to generate MAs. In this study, we analyzed whether the chatbot ChatGPT is able to summarize information in a useful fashion for providers and pat  ...[more]

Similar Datasets

| S-EPMC8177959 | biostudies-literature
2023-04-10 | GSE178228 | GEO
| S-EPMC7475056 | biostudies-literature
| S-EPMC8599386 | biostudies-literature
| S-EPMC4799039 | biostudies-literature
| S-EPMC6766878 | biostudies-literature
| S-EPMC8163943 | biostudies-literature
| S-EPMC6850607 | biostudies-literature
| S-EPMC6822973 | biostudies-literature
| S-EPMC9837020 | biostudies-literature