Project description:Thin-film composite poly(amide) (PA) membranes have greatly diversified water supplies and food products. However, users would benefit from a control of the electrostatic interactions between the liquid and the net surface charge interface in order to benefit wider application. The ionic selectivity of the 100 nm PA semi-permeable layer is significantly affected by the pH of the solution. In this work, for the first time, a convenient route is presented to configure the surface charge of PA membranes by gamma ray induced surface grafting. This rapid and up-scalable method offers a versatile route for surface grafting by adjusting the irradiation total dose and the monomer concentration. Specifically, thin coatings obtained at low irradiation doses between 1 and 10 kGy and at low monomer concentration of 1 v/v% in methanol/water (1:1) solutions, dramatically altered the net surface charge of the pristine membranes from -25 mV to +45 mV, whilst the isoelectric point of the materials shifted from pH 3 to pH 7. This modification resulted in an improved water flux by over 55%, from 45.9 to up 70 L.m-2.h-1, whilst NaCl rejection was found to drop by only 1% compared to pristine membranes.
Project description:FePd alloys in the thin film form represent a multipurpose and versatile material with relevant chemical and physical properties studied in different research fields. Moreover, the ability to manipulate and fine-tune the film surface with nanometric scale precision represents a degree of freedom useful to adapt these thin film properties to the demands of different desired applications. In this manuscript, Fe70Pd30 (at. %) thin films are prepared with a thickness of 50 and 200 nm by means of the widely used co-sputtering deposition technique. Subsequently, selective removal of the iron element from the alloy and the consequent surface diffusion of the palladium was induced by a dealloying treatment under free corrosion conditions in hydrochloric acid. The size and shape of the grains of the as-deposited thin films determine the dissolution rate of the iron element with a direct consequence not only on the surface morphology and the stoichiometry of the alloy but also on the wetting and magnetic properties of the sample. X-ray diffraction, Scanning Electron Microscopy (SEM) images, contact angle and magnetic measurements have been performed to provide a thorough characterisation of the fundamental properties of these nanostructured bimetallic thin films.
Project description:Herein long-term delivery of proteins from biodegradable thin film devices is demonstrated, where a nanostructured polymer membrane controls release. Protein was sealed between two poly(caprolactone) films, which generated the thin film devices. Protein release for 210 days was shown in vitro, and stable activity was established through 70 days with a model protein. These thin film devices present a promising delivery platform for biologic therapeutics, particularly for application in constrained spaces.
Project description:Nanocrystalline platinum with different morphologies is synthesized via electrochemical deposition technique. The nucleation mechanism and its structural effect over the electrodeposited Pt on carbon electrodes have been systematically studied. Powder X-ray diffraction, X-ray photoelectron spectroscopy, and field-emission scanning electron microscopy are employed to study nucleation, oxidation states, and Pt structure growth on a carbon electrode. This study reports significant development of Pt metal nanoparticles with different morphologies such as a sphere, flower, core-flower, and rod-like structure directly fabricated on carbon electrode while tuning the deposition parameters such as current density, time, temperature, pH during the deposition process. The proposed electrochemical route represents a superior fabrication procedure for large-scale electrode fabrication compared to a conventional method for preparing membrane electrode assemblies for fuel cell stacks.
Project description:Discovery of new high-entropy electrocatalysts requires testing of hundreds to thousands of possible compositions, which can be addressed most efficiently by high-throughput experimentation on thin-film material libraries. Since the conditions for high-throughput measurements ("screening") differ from more standardized methods, it is frequently a concern whether the findings from screening can be transferred to the commonly used particulate catalysts. We demonstrate the successful transfer of results from thin-film material libraries to particles of Cantor alloy oxide (Co-Cr-Fe-Mn-Ni)3O4. The chemical compositions of the libraries, all single-phase spinels, cover a wide compositional range of (Cr8.1-28.0Mn11.6-28.4Fe10.6-39.0Co11.4-36.7Ni13.5-31.4)37.7±0.6O62.3±0.6, with composition-dependent lattice constant values ranging from 0.826 to 0.851 nm. Electrochemical screening of the libraries for the oxygen evolution reaction (OER) identifies (Cr24.6±1.4Mn15.7±2.0Fe16.9±1.8Co26.1±1.9Ni16.6±1.7)37.8±0.8O62.2±1.2 as the most active composition, exhibiting an overpotential of 0.36 V at a current density of 1 mA cm-2. This "hit" in the library was subsequently synthesized in the form of particles with the same composition and crystal structure using an aerosol-based synthesis strategy. The similar OER activity of the most active thin-film composition and the derived catalyst particles validates the proposed approach of accelerated discovery of novel catalysts by screening of thin-film libraries.
Project description:Nanostructured Bi2WO6 thin film electrodes with enhanced solar energy conversion and photocatalytic properties have been fabricated using Aerosol-Assisted Chemical Vapor Deposition (AACVD). By conveniently controlling the deposition process parameters, Bi2WO6 electrodes were fabricated with nanoplates and hierarchical buckyball-shaped microsphere structures morphology. A detailed study has been conducted to correlate the structure and morphology with the photoelectrochemical (PEC) and photocatalytic dye degradation performance. The PEC investigations revealed that the hierarchical buckyball-shaped microsphere structured Bi2WO6 electrodes have shown the photocurrent density of 220 μAcm-2 while nanoplates have a photocurrent density of 170 μAcm-2 at 0.23 V (vs. Ag/AgCl/3M KCl) under AM1.5 illumination. The PEC characterization of Bi2WO6 electrodes also reveals that the photocurrent density and photocurrent onset potential is strongly dependent on the orientation and morphology, hence the deposition parameters. Similarly, the methylene blue (MB) and rhodamine B (RhB) photodegradation performance of Bi2WO6 electrodes also show a strong correlation with morphology. This finding provides an appropriate route to engineer the energetic and interfacial properties of Bi2WO6 electrode to enhance solar energy conversion and the photocatalytic performance of semiconductor materials.
Project description:A novel matrix-free LDI MS platform using a thin film of patterned nanostructured gold, capped with methyl- and carboxy-terminated self-assembled monolayers (SAMs) is presented. Calibration on the matrix-free LDI surface was performed using a peptide standard mixture available for MALDI analysis. MS analysis for limit of detection was performed using angiotensin I peptide. Peptide fragments from standard protein digests of bovine serum albumin, bovine catalase, and bovine lactoperoxidase were used to carry out peptide mass fingerprinting analysis. Sequence coverage of each protein digest and the number of detected peptide fragments were compared with conventional MALDI MS on a standard MALDI plate. Versatility of the nanostructured gold LDI substrate is illustrated by performing MS analysis on a protein digest using different enzymes and by small molecule MS analysis.
Project description:Porous and highly conjugated multiply fused porphyrin thin films are prepared from a fast and single-step chemical vapor deposition approach. While the solution-based coupling of porphyrins is usually undertaken at room temperature, the gas phase reaction of nickel(II) 5,15-(diphenyl)porphyrin and iron(III) chloride (FeCl3) is investigated for temperatures as high as 200 °C. Helium ion and atomic force microscopy, supported by weight and thickness measurements, shows a drastic decrease of the fused porphyrin thin film's density accompanied by the formation of a mesoporous morphology upon increase of the reaction temperature. The increase of the film's porosity is attributed to formation of a greater amount of HCl (originated from both the oxidative coupling and chlorination reactions) and the release of gaseous FeCl3 byproducts, i.e., Cl2, at higher deposition temperatures. In addition, high resolution mass spectrometry reveals that increase of the reaction temperature promotes a higher degree of conjugation of the fused porphyrins chains, which ensures that high electronic conductivities are maintained along with high porosity. The method reported herein could enable the engineering of fused porphyrin thin films in sensing and catalytic devices.
Project description:Porous and highly conjugated multiply fused porphyrin thin films are prepared from a fast and single-step chemical vapor deposition approach. While the solution-based coupling of porphyrins is usually undertaken at room temperature, the gas phase reaction of nickel(II) 5,15-(diphenyl)porphyrin and iron(III) chloride (FeCl3) is investigated for temperatures as high as 200 °C. Helium ion and atomic force microscopy, supported by weight and thickness measurements, shows a drastic decrease of the fused porphyrin thin film's density accompanied by the formation of a mesoporous morphology upon increase of the reaction temperature. The increase of the film's porosity is attributed to formation of a greater amount of HCl (originated from both the oxidative coupling and chlorination reactions) and the release of gaseous FeCl3 byproducts, i.e., Cl2, at higher deposition temperatures. In addition, high resolution mass spectrometry reveals that increase of the reaction temperature promotes a higher degree of conjugation of the fused porphyrins chains, which ensures that high electronic conductivities are maintained along with high porosity. The method reported herein could enable the engineering of fused porphyrin thin films in sensing and catalytic devices.
Project description:Thin-film black phosphorus (BP) is an attractive material for mid-infrared optoelectronic applications because of its layered nature and a moderate bandgap of around 300 meV. Previous photoconduction demonstrations show that a vertical electric field can effectively reduce the bandgap of thin-film BP, expanding the device operational wavelength range in mid-infrared. Here, we report the widely tunable mid-infrared light emission from a hexagonal boron nitride (hBN)/BP/hBN heterostructure device. With a moderate displacement field up to 0.48 V/nm, the photoluminescence (PL) peak from a ~20-layer BP flake is continuously tuned from 3.7 to 7.7 μm, spanning 4 μm in mid-infrared. The PL emission remains perfectly linear-polarized along the armchair direction regardless of the bias field. Moreover, together with theoretical analysis, we show that the radiative decay probably dominates over other nonradiative decay channels in the PL experiments. Our results reveal the great potential of thin-film BP in future widely tunable, mid-infrared light-emitting and lasing applications.