Unknown

Dataset Information

0

Aberrant methylmalonylation underlies methylmalonic acidemia and is attenuated by an engineered sirtuin.


ABSTRACT: Organic acidemias such as methylmalonic acidemia (MMA) are a group of inborn errors of metabolism that typically arise from defects in the catabolism of amino and fatty acids. Accretion of acyl-CoA species is postulated to underlie disease pathophysiology, but the mechanism(s) remain unknown. Here, we surveyed hepatic explants from patients with MMA and unaffected donors, in parallel with samples from various mouse models of methylmalonyl-CoA mutase deficiency. We found a widespread posttranslational modification, methylmalonylation, that inhibited enzymes in the urea cycle and glycine cleavage pathway in MMA. Biochemical studies and mouse genetics established that sirtuin 5 (SIRT5) controlled the metabolism of MMA-related posttranslational modifications. SIRT5 was engineered to resist acylation-driven inhibition via lysine to arginine mutagenesis. The modified SIRT5 was used to create an adeno-associated viral 8 (AAV8) vector and systemically delivered to mutant and control mice. Gene therapy ameliorated hyperammonemia and reduced global methylmalonylation in the MMA mice.

SUBMITTER: Head PE 

PROVIDER: S-EPMC10468269 | biostudies-literature | 2022 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Aberrant methylmalonylation underlies methylmalonic acidemia and is attenuated by an engineered sirtuin.

Head PamelaSara E PE   Myung Sangho S   Chen Yong Y   Schneller Jessica L JL   Wang Cindy C   Duncan Nicholas N   Hoffman Pauline P   Chang David D   Gebremariam Abigael A   Gucek Marjan M   Manoli Irini I   Venditti Charles P CP  

Science translational medicine 20220525 646


Organic acidemias such as methylmalonic acidemia (MMA) are a group of inborn errors of metabolism that typically arise from defects in the catabolism of amino and fatty acids. Accretion of acyl-CoA species is postulated to underlie disease pathophysiology, but the mechanism(s) remain unknown. Here, we surveyed hepatic explants from patients with MMA and unaffected donors, in parallel with samples from various mouse models of methylmalonyl-CoA mutase deficiency. We found a widespread posttranslat  ...[more]

Similar Datasets

2019-08-01 | GSE118862 | GEO
| S-EPMC6328030 | biostudies-literature
2013-05-01 | E-GEOD-41044 | biostudies-arrayexpress
| PRJNA487064 | ENA
| S-EPMC3362903 | biostudies-literature
| S-EPMC5214677 | biostudies-literature
| S-EPMC2660647 | biostudies-literature
| S-EPMC4149057 | biostudies-literature
| S-EPMC5660767 | biostudies-literature
| S-EPMC5982627 | biostudies-literature