Project description:The unprecedented magnitude of the 2013-2016 Makona Ebola virus (M-EBOV) epidemic likely resulted from multiple epidemiologic factors that set it apart from previous outbreaks. Nonetheless, genetic adaptations that distinguish M-EBOV from previous isolates may also have contributed to the scale of the epidemic. Of particular interest is a M-EBOV glycoprotein (GP) variant, GP-A82V, that was first detected at the inflection point of the 2013-2016 outbreak - when the number of cases increased exponentially - and which completely supplanted the earlier M-EBOV sequence. We found that, as compared with the earlier strain, GP-A82V increased the ability of M-EBOV to fuse with and infect cells of primate origin, including human blood dendritic cells, without altering innate immune signaling in target cells. Residue 82 is located at the NPC1-binding site on M-EBOV GP and the increased infectivity of GP-A82V was restricted to cells from species in which the NPC1 orthologue bears primate-defining residues at the critical interface. We utilized HIV-derived lentiviral vectors pseudotyped with founder and A82V containing M-EBOV GPs to explore the potential that this modification alters how human monocyte-derived dendritic cells (MDDCs) respond to EBOV GP stimulation.
Project description:Ebola virus causes a severe haemorrhagic fever in humans with high case fatality and significant epidemic potential. The 2013-2016 outbreak in West Africa was unprecedented in scale, being larger than all previous outbreaks combined, with 28 646 reported cases and 11 323 reported deaths. It was also unique in its geographical distribution and multicountry spread. It is vital that the lessons learned from the world's largest Ebola outbreak are not lost. This article aims to provide a detailed description of the evolution of the outbreak. We contextualize this outbreak in relation to previous Ebola outbreaks and outline the theories regarding its origins and emergence. The outbreak is described by country, in chronological order, including epidemiological parameters and implementation of outbreak containment strategies. We then summarize the factors that led to rapid and extensive propagation, as well as highlight the key successes, failures and lessons learned from this outbreak and the response.This article is part of the themed issue 'The 2013-2016 West African Ebola epidemic: data, decision-making and disease control'.
Project description:The variety of factors that contributed to the initial undetected spread of Ebola virus disease in West Africa during 2013-2016 and the difficulty controlling the outbreak once the etiology was identified highlight priorities for disease prevention, detection, and response. These factors include occurrence in a region recovering from civil instability and lacking experience with Ebola response; inadequate surveillance, recognition of suspected cases, and Ebola diagnosis; mobile populations and extensive urban transmission; and the community's insufficient general understanding about the disease. The magnitude of the outbreak was not attributable to a substantial change of the virus. Continued efforts during the outbreak and in preparation for future outbreak response should involve identifying the reservoir, improving in-country detection and response capacity, conducting survivor studies and supporting survivors, engaging in culturally appropriate public education and risk communication, building productive interagency relationships, and continuing support for basic research.
Project description:The 2013-2016 West Africa Ebola virus disease epidemic was notable for its scope, scale, and complexity. This briefing presents a series of distinguishing epidemiological features that set this outbreak apart. Compared to one concurrent and 23 previous outbreaks of the disease over 40 years, this was the only occurrence of Ebola virus disease involving multiple nations and qualifying as a pandemic. Across multiple measures of magnitude, the 2013-2016 outbreak was accurately described using superlatives: largest and deadliest in terms of numbers of cases and fatalities; longest in duration; and most widely dispersed geographically, with outbreak-associated cases occurring in 10 nations. In contrast, the case-fatality rate was much lower for the 2013-2016 outbreak compared to the other 24 outbreaks. A population of particular interest for ongoing monitoring and public health surveillance is comprised of more than 17,000 "survivors," Ebola patients who successfully recovered from their illness. The daunting challenges posed by this outbreak were met by an intensive international public health response. The near-exponential rate of increase of incident Ebola cases during mid-2014 was successfully slowed, reversed, and finally halted through the application of multiple disease containment and intervention strategies.
Project description:The 2013-2016 Ebola outbreak in West Africa is the largest on record with 28 616 confirmed, probable and suspected cases and 11 310 deaths officially recorded by 10 June 2016, the true burden probably considerably higher. The case fatality ratio (CFR: proportion of cases that are fatal) is a key indicator of disease severity useful for gauging the appropriate public health response and for evaluating treatment benefits, if estimated accurately. We analysed individual-level clinical outcome data from Guinea, Liberia and Sierra Leone officially reported to the World Health Organization. The overall mean CFR was 62.9% (95% CI: 61.9% to 64.0%) among confirmed cases with recorded clinical outcomes. Age was the most important modifier of survival probabilities, but country, stage of the epidemic and whether patients were hospitalized also played roles. We developed a statistical analysis to detect outliers in CFR between districts of residence and treatment centres (TCs), adjusting for known factors influencing survival and identified eight districts and three TCs with a CFR significantly different from the average. From the current dataset, we cannot determine whether the observed variation in CFR seen by district or treatment centre reflects real differences in survival, related to the quality of care or other factors or was caused by differences in reporting practices or case ascertainment.This article is part of the themed issue 'The 2013-2016 West African Ebola epidemic: data, decision-making and disease control'.
Project description:Under a traditional paradigm, only those with the expected background knowledge consume academic literature. The lay press, as well as government and non-government agencies, play a complementary role of extracting findings of high interest or importance and translating them for general viewing. The need for accurate reporting and public advising is paramount when attempting to tackle epidemic outbreaks through behavior change. Yet, public trust in media outlets is at a historic low. The Crisis and Emergency Risk Communication (CERC) model for media reporting on public health emergencies was established in 2005 and has subsequently been used to analyze media reporting on outbreaks of influenza and measles as well as smoking habits and medication compliance. However, no media analysis had yet been performed on the 2013-2016 Ebola Virus Disease (EVD) outbreak. This study compared the EVD information relayed by lay press sources with general review articles in the academic literature through a mixed-methods analysis. These findings suggest that comprehensive review articles could not serve as a source to clarify and contextualize the uncertainties around the EVD outbreak, perhaps due to adherence to technical accuracy at the expense of clarity within the context of outbreak conditions. This finding does not imply inferiority of the academic literature, nor does it draw direct causation between confusion in review articles and public misunderstanding. Given the erosion of the barriers siloing academia, combined with the demands of today's fast-paced media environment, contemporary researchers should realize that no study is outside the public forum and to therefore consider shifting the paradigm to take personal responsibility in the process of accurately translating their scientific words into public policy actions to best serve as a source of clarity.
Project description:The 2013-2016 West Africa Ebola virus disease pandemic was the largest, longest, deadliest, and most geographically expansive outbreak in the 40-year interval since Ebola was first identified. Fear-related behaviors played an important role in shaping the outbreak. Fear-related behaviors are defined as "individual or collective behaviors and actions initiated in response to fear reactions that are triggered by a perceived threat or actual exposure to a potentially traumatizing event. FRBs modify the future risk of harm." This review examines how fear-related behaviors were implicated in (1) accelerating the spread of Ebola, (2) impeding the utilization of life-saving Ebola treatment, (3) curtailing the availability of medical services for treatable conditions, (4) increasing the risks for new-onset psychological distress and psychiatric disorders, and (5) amplifying the downstream cascades of social problems. Fear-related behaviors are identified for each of these outcomes. Particularly notable are behaviors such as treating Ebola patients in home or private clinic settings, the "laying of hands" on Ebola-infected individuals to perform faith-based healing, observing hands-on funeral and burial customs, foregoing available life-saving treatment, and stigmatizing Ebola survivors and health professionals. Future directions include modeling the onset, operation, and perpetuation of fear-related behaviors and devising strategies to redirect behavioral responses to mass threats in a manner that reduces risks and promotes resilience.
Project description:BackgroundAs part of a Phase III trial with the Ebola vaccine rVSVΔG-ZEBOV-GP in Guinea, we invited frontline workers (FLWs) to participate in a sub-study to provide additional information on the immunogenicity of the vaccine.MethodsWe conducted an open-label, non-randomized, single-arm immunogenicity evaluation of one dose of rVSVΔG-ZEBOV-GP among healthy FLWs in Guinea. FLWs who refused vaccination were offered to participate as a control group. We followed participants for 84 days with a subset followed-up for 180 days. The primary endpoint was immune response, as measured by ELISA for ZEBOV-glycoprotein-specific antibodies (ELISA-GP) at 28 days. We also conducted neutralization, whole virion ELISA and enzyme-linked immunospot (ELISPOT) assay for cellular response.ResultsA total of 1172 participants received one dose of vaccine and were followed-up for 84 days, among them 114 participants were followed-up for 180 days. Additionally, 99 participants were included in the control group and followed up for 180 days. Overall, 86.4% (95% CI 84.1-88.4) of vaccinated participants seroresponded at 28 days post-vaccination (ELISA- GP) with 65% of these seroresponding at 14 days post-vaccination. Among those who seroresponded at 28 days, 90.7% (95% CI 82.0-95.4) were still seropositive at 180 days. The proportion of seropositivity in the unvaccinated group was 0.0% (95% CI 0.0-3.8) at 28 days and 5.4% (95% CI 2.1-13.1) at 180 days post-vaccination. We found weak correlation between ELISA-GP and neutralization at baseline but significant pairwise correlation at 28 days post-vaccination. Among samples analysed for cellular response, only 1 (2.2%) exhibited responses towards the Zaire Ebola glycoprotein (Ebola GP ≥ 10) at baseline, 10 (13.5%) at day 28 post-vaccination and 27 (48.2%) at Day 180.ConclusionsWe found one dose of rVSVΔG-ZEBOV-GP to be highly immunogenic at 28- and 180-days post vaccination among frontline workers in Guinea. We also found a cellular response that increased with time.
Project description:BackgroundTo date, epidemiological studies at the index site of the 2013-16 west African Ebola outbreak in Meliandou, Guinea, have been restricted in their scope. We aimed to determine the occurrence of previously undocumented Ebola virus disease (EVD) cases and infections, and to reconstruct transmission events.MethodsThis cross-sectional seroprevalence survey of the adult population of Meliandou used a highly specific oral fluid test and detailed interviews of all households in the village and key informants. Each household was interviewed, with all members prompted to describe the events of the outbreak, any illness within the household, and possible contact with suspected cases. Information for deceased individuals was provided by relatives living in the same household. Symptoms were based on Ebola virus Makona variant EVD case definitions (focusing on fever, vomiting, and diarrhoea). For antibody testing, we used an Ebola virus glycoprotein IgG capture enzyme immunoassay developed from a previously validated assay. A maximum exposure level was assigned to every participant using a predetermined scale. We used a generalised linear model (logit function) to estimate odds ratios for the association of sociodemographic variables and exposure level with Ebola virus infection. We adjusted estimates for age and maximum exposure, as appropriate.FindingsBetween June 22, and July 9, 2017, we enrolled 237 participants from 27 households in Meliandou. Two households refused to participate and one was absent. All adults in participating households who were present for the interview provided an oral fluid swab for testing, of which 224 were suitable for analysis. In addition to the 11 EVD deaths described previously, on the basis of clinical description and oral fluid testing, we found two probable EVD deaths and eight previously unrecognised anti-Ebola virus IgG-positive survivors, including one who had mild symptoms and one who was asymptomatic, resulting in a case fatality of 55·6% (95% CI 30·8-78·5) for adults. Health-care work (adjusted odds ratio 6·64, 1·54-28·56; p=0·001) and level of exposure (odds ratio adjusted for linear trend across five levels 2·79, 1·59-4·883; p<0·0001) were independent risk factors for infection.InterpretationEbola virus infection was more widespread in this spillover population than previously recognised (21 vs 11 cases). We show the first serological evidence of survivors in this population (eight anti-Ebola virus IgG seropositive) and report a case fatality lower than previously reported (55·6% vs 100% in adults). These data show the high community coverage achievable by using a non-invasive test and, by accurately documenting the beginnings of the west African Ebola virus outbreak, reveal important insight into transmission dynamics and risk factors that underpin Ebola virus spillover events.FundingUS Food and Drug Administration, Wellcome Trust, and German Research Council.
Project description:Epidemiologic information is key when interpreting whole genome sequence data – lessons learned from the genomic analysis of the largest German Legionella pneumophila outbreak (Warstein, 2013)