Unknown

Dataset Information

0

Rna M6 a Methylation Regulates Glycolysis of Beige Fat and Contributes to Systemic Metabolic Homeostasis.


ABSTRACT: N6-methyladenosine (m6 A) modification has been implicated in the progression of obesity and metabolic diseases. However, its impact on beige fat biology is not well understood. Here, via m6 A-sequencing and RNA-sequencing, this work reports that upon beige adipocytes activation, glycolytic genes undergo major events of m6 A modification and transcriptional activation. Genetic ablation of m6 A writer Mettl3 in fat tissues reveals that Mettl3 deficiency in mature beige adipocytes leads to suppressed glycolytic capability and thermogenesis, as well as reduced preadipocytes proliferation via glycolytic product lactate. In addition, specific modulation of Mettl3 in beige fat via AAV delivery demonstrates consistently Mettl3's role in glucose metabolism, thermogenesis, and beige fat hyperplasia. Mechanistically, Mettl3 and m6 A reader Igf2bp2 control mRNA stability of key glycolytic genes in beige adipocytes. Overall, these findings highlight the significance of m6 A on fat biology and systemic energy homeostasis.

SUBMITTER: Li Y 

PROVIDER: S-EPMC10477848 | biostudies-literature | 2023 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Rna M<sup>6</sup> a Methylation Regulates Glycolysis of Beige Fat and Contributes to Systemic Metabolic Homeostasis.

Li Yu Y   Zhang Yankang Y   Zhang Ting T   Ping Xiaodan X   Wang Dongmei D   Chen Yanru Y   Yu Jian J   Liu Caizhi C   Liu Ziqi Z   Zheng Yuhan Y   Yang Yongfeng Y   Ruan Chengchao C   Li Dali D   Du Zhenyu Z   Wang Jiqiu J   Xu Lingyan L   Ma Xinran X  

Advanced science (Weinheim, Baden-Wurttemberg, Germany) 20230705 25


N6-methyladenosine (m<sup>6</sup> A) modification has been implicated in the progression of obesity and metabolic diseases. However, its impact on beige fat biology is not well understood. Here, via m<sup>6</sup> A-sequencing and RNA-sequencing, this work reports that upon beige adipocytes activation, glycolytic genes undergo major events of m<sup>6</sup> A modification and transcriptional activation. Genetic ablation of m<sup>6</sup> A writer Mettl3 in fat tissues reveals that Mettl3 deficiency  ...[more]

Similar Datasets

| S-EPMC5727902 | biostudies-literature
| S-EPMC6038052 | biostudies-literature
| S-EPMC8358859 | biostudies-literature
| S-EPMC8341513 | biostudies-literature
| S-EPMC9282374 | biostudies-literature
| S-EPMC7343629 | biostudies-literature
| S-EPMC10356794 | biostudies-literature
| S-EPMC4980448 | biostudies-literature
| S-EPMC7880311 | biostudies-literature