Project description:ObjectiveHydrogen sulfide (H2S) has been found to act as an important gasotransmitter to regulate cell activities. This study aimed to investigate the effect of H2S on autophagy of nucleus pulposus (NP) cells under hypoxia and possible mechanism.Materials and methodsNP cells were isolated from rat caudal discs. Cobalt chloride was used to mimic hypoxia, sodium hydrosulfide was used to emulate exogenous H2S and 3-methyladenine was used to block cell autophagy. Cell viability was assessed by phase contrast microscope and Cell Counting Kit-8 method. Moreover, expression of key autophagic proteins was analyzed via western blotting, and transmission electron microscopy was performed to detect autophagosomes.ResultsHypoxia markedly impaired NP cell proliferation compared with control. Whereas H2S provided pro-proliferation and pro-autophagy effects on hypoxic NP cells. However, these beneficial impact of H2S on hypoxic NP cells were reversed by autophagy inhibitor.ConclusionsOur results showed that H2S played a cytoprotective role in NP cells exposed to hypoxia in an autophagy-dependent manner.
Project description:Inflammatory cascade and extracellular matrix remodeling have been identified as pivotal pathological factors in the progression of intervertebral disc degeneration (IDD), but the mechanisms underlying the aberrant activation of transcription during nucleus pulposus (NP) cell degeneration remain elusive. Super-enhancers (SEs) are large clusters of adjacent lone enhancers, which control expression modes of cellular fate and pathogenic genes. Here, we showed that SEs underwent tremendous remodeling during NP cell degeneration and that SE-related transcripts were most abundant in inflammatory cascade and extracellular matrix remodeling processes. Inhibition of cyclin-dependent kinase 7, a transcriptional kinase-mediated transcriptional initiation in trans-acting SE complex, constricted the transcription of inflammatory cascades, and extracellular matrix remodeling-related genes such as IL1β and MMP3 in NP cells, meanwhile, also restrained the transcription of Mmp16, Tnfrsf21, and Il11ra1 to retard IDD in rats. In summary, our findings clarify SEs control the transcription of genes associated with inflammatory cascade and extracellular matrix remodeling during NP cell degeneration and identify inhibition of the cyclin-dependent kinase 7, required for SE-mediated transcriptional activation, as a therapeutic option for IDD.
Project description:Nucleus pulposus (NP) cells reside in the avascular and hypoxic microenvironment of intervertebral discs. Importantly, many activities related to survival and function of NP cells are controlled by the HIF-family of transcription factors. We hypothesize that NP cells adapt to their hypoxic niche through modulation of macroautophagy/autophagy. In various cell types, hypoxia induces autophagy in a HIF1A-dependent fashion; however, little is known about hypoxic regulation of autophagy in NP cells. Hypoxia increases the number of autophagosomes as seen by TEM analysis and LC3-positive puncta in NP cells. Hypoxic induction of autophagy was also demonstrated by a significantly higher number of autophagosomes and smaller change in autolysosomes in NP cells expressing tandem-mCherry-EGFP-LC3B. Increased LC3-II levels were not accompanied by a concomitant increase in BECN1 or the ATG12-ATG5 complex. In addition, ULK1 phosphorylation at Ser757 and Ser777 responsive to MTOR and AMPK, respectively, was not affected in hypoxia. Interestingly, when MTOR activity was inhibited by rapamycin or Torin1, LC3-II levels did not change, suggesting a novel MTOR-independent regulation. Noteworthy, while silencing of HIF1A affected hypoxic induction of BNIP3, it did not affect LC3-II levels, indicating hypoxia-induced autophagy is HIF1-independent. Importantly, there was no change in the number of LC3-positive autophagosomes in NP-specific Hif1a null mice. Finally, inhibition of autophagic flux did not affect the glycolytic metabolism of NP cells, suggesting a possible nonmetabolic role of autophagy. Taken together, our study for the first time shows that NP cells regulate autophagy in a noncanonical fashion independent of MTOR and HIF1A signaling.
Project description:Intervertebral disc degeneration (IVDD) is a common cause of lower back pain. Programmed cell death (PCD) including apoptosis and autophagy is known to play key mechanistic roles in the development of IVDD. We hypothesized that the nucleus pulposus cells that make up the center of the IVD can be affected by aging and environmental oxygen concentration, thus affecting the development of IVDD. Here, we evaluated the phenotype changes and PCD signaling in nucleus pulposus cells in two different oxygen percentages (5% (hypoxia) and 20% (normoxia)) up to serial passage 20. NP cells were isolated from the lumbar discs of rats, and the chondrogenic, autophagic, and apoptotic gene expressions were analyzed during cell culture up to serial passage 20. Hypoxia significantly increased the number of autophagosomes, as determined by monodansylcadaverine staining and transmission electron microscopy. Furthermore, hypoxia triggered the activation of autophagic flux (beclin-1, LC3-II/LC3-I ratio, and SIRT1) with a concomitant decrease in the expression of apoptotic proteins (Bax and caspase-3). Despite injury and age differences, no significant differences were observed between the ex vivo lumbar disc cultures of groups incubated in the hypoxic chamber. Our study provides a better understanding of autophagy- and apoptosis-related senescence in NP cells. These results also provide insight into the effects of aging on NP cells and their PCD levels during aging.
Project description:The objective of this study was to determine the role of FIH-1 in regulating HIF-1 activity in the nucleus pulposus (NP) cells and the control of this regulation by binding and sequestration of FIH-1 by Mint3. FIH-1 and Mint3 were both expressed in the NP and were shown to strongly co-localize within the cell nucleus. Although both mRNA and protein expression of FIH-1 decreased in hypoxia, only Mint3 protein levels were hypoxiasensitive. Overexpression of FIH-1 was able to reduce HIF-1 function, as seen by changes in activities of hypoxia response element-luciferase reporter and HIF-1-C-TAD and HIF-2-TAD. Moreover, co-transfection of either full-length Mint3 or the N terminus of Mint3 abrogated FIH-1-dependent reduction in HIF-1 activity under both normoxia and hypoxia. Nuclear levels of FIH-1 and Mint3 decreased in hypoxia, and the use of specific nuclear import and export inhibitors clearly showed that cellular compartmentalization of overexpressed FIH-1 was critical for its regulation of HIF-1 activity in NP cells. Interestingly, microarray results after stable silencing of FIH-1 showed no significant changes in transcripts of classical HIF-1 target genes. However, expression of several other transcripts, including those of the Notch pathway, changed in FIH-1-silenced cells. Moreover, co-transfection of Notch-ICD could restore suppression of HIF-1-TAD activity by exogenous FIH-1. Taken together, these results suggest that, possibly due to low endogenous levels and/or preferential association with substrates such as Notch, FIH-1 activity does not represent a major mechanism by which NP cells control HIF-1-dependent transcription, a testament to their adaptation to a unique hypoxic niche.
Project description:BackgroundIntervertebral disc degeneration (IVDD) can cause low back pain, a major public health concern. IVDD is characterized with loss of cells especially those in nucleus pulposus (NP), due to the limited proliferative potential and regenerative ability. Few studies, however, have been carried out to investigate the in vivo proliferation events of NP cells and the cellular contribution of a specific subpopulation of NP during postnatal growth or regeneration.MethodsWe generated FGFR3-3*Flag-IRES-GFP mice and crossed FGFR3-CreERT2 mice with Rosa26-mTmG, Rosa26-DTA and Rosa26-Confetti mice, respectively, to perform inducible genetic tracing studies.ResultsExpression of FGFR3 was found in the outer region of NP with co-localized expressions of proliferating markers. By fate mapping studies, FGFR3-positive (FGFR3+) NP cells were found proliferate from outer region to inner region of NP during postnatal growth. Clonal lineage tracing by Confetti mice and ablation of FGFR3·+ NP cells by DTA mice further revealed that the expansion of the FGFR3+ cells was required for the morphogenesis and homeostasis of postnatal NP. Moreover, in degeneration and regeneration model of mouse intervertebral disc, FGFR3+ NP cells underwent extensive expansion during the recovery stage.ConclusionOur present work demonstrates that FGFR3+ NP cells are novel subpopulation of postnatal NP with long-existing proliferative capacity shaping the adult NP structure and participating in the homeostasis maintenance and intrinsic repair of NP. These findings may facilitate the development of new therapeutic approaches for IVD regeneration.
Project description:Intervertebral disc (IVD) disease (IDD) is a complex, multifactorial disease. While various aspects of IDD progression have been reported, the underlying molecular pathways and transcriptional networks that govern the maintenance of healthy nucleus pulposus (NP) and annulus fibrosus (AF) have not been fully elucidated. We defined the transcriptome map of healthy human IVD by performing single-cell RNA-sequencing (scRNA-seq) in primary AF and NP cells isolated from non-degenerated lumbar disc. Our systematic and comprehensive analyses revealed distinct genetic architecture of human NP and AF compartments and identified 2,196 differentially expressed genes. Gene enrichment analysis showed that SFRP1, BIRC5, CYTL1, ESM1 and CCNB2 genes were highly expressed in the AF cells; whereas, COL2A1, DSC3, COL9A3, COL11A1, and ANGPTL7 were mostly expressed in the NP cells. Further, functional annotation clustering analysis revealed the enrichment of receptor signaling pathways genes in AF cells, while NP cells showed high expression of genes related to the protein synthesis machinery. Subsequent interaction network analysis revealed a structured network of extracellular matrix genes in NP compartments. Our regulatory network analysis identified FOXM1 and KDM4E as signature transcription factor of AF and NP respectively, which might be involved in the regulation of core genes of AF and NP transcriptome.
Project description:Aging is one of the major etiological factors driving intervertebral disc (IVD) degeneration, the main cause of low back pain. The nucleus pulposus (NP) includes a heterogeneous cell population, which is still poorly characterized. Here, we aimed to uncover main alterations in NP cells with aging. For that, bovine coccygeal discs from young (12 months) and old (10-16 years old) animals were dissected and primary NP cells were isolated. Gene expression and proteomics of fresh NP cells were performed. NP cells were labelled with propidium iodide and analysed by flow cytometry for the expression of CD29, CD44, CD45, CD146, GD2, Tie2, CD34 and Stro-1. Morphological cell features were also dissected by imaging flow cytometry. Elder NP cells (up-regulated bIL-6 and bMMP1 gene expression) presented lower percentages of CD29+, CD44+, CD45+ and Tie2+ cells compared with young NP cells (upregulated bIL-8, bCOL2A1 and bACAN gene expression), while GD2, CD146, Stro-1 and CD34 expression were maintained with age. NP cellulome showed an upregulation of proteins related to endoplasmic reticulum (ER) and melanosome independently of age, whereas proteins upregulated in elder NP cells were also associated with glycosylation and disulfide bonds. Flow cytometry analysis of NP cells disclosed the existence of 4 subpopulations with distinct auto-fluorescence and size with different dynamics along aging. Regarding cell morphology, aging increases NP cell area, diameter and vesicles. These results contribute to a better understanding of NP cells aging and highlighting potential anti-aging targets that can help to mitigate age-related disc disease.
Project description:Endoplasmic reticulum (ER) stress is shown to promote nucleus pulposus (NP) cell apoptosis and intervertebral disc degeneration. However, little is known about ER stress regulation by the hypoxic disc microenvironment and its contribution to extracellular matrix homeostasis. NP cells were cultured under hypoxia (1% partial pressure of oxygen) to assess ER stress status, and gain-of-function and loss-of-function approaches were used to assess the role of hypoxia-inducible factor (HIF)-1α in this pathway. In addition, the contribution of ER stress induction on the NP cell secretome was assessed by a nontargeted quantitative proteomic analysis by sequential windowed data independent acquisition of the total high-resolution mass spectra-mass spectrometry. NP cells exhibited a lower ER stress burden under hypoxia. Knockdown of HIF-1α increased C/EBP homologous protein, protein kinase RNA-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6) levels, whereas HIF-1α stabilization decreased the expression of ER stress markers Ddit3, Hsp5a, Atf6, and Eif2a. Interestingly, ER stress inducers tunicamycin and thapsigargin induced HIF-1α activity under hypoxia while promoting the unfolded protein response. NP cell secretome analysis demonstrated an impact of ER stress induction on extracellular matrix secretion, with decreases in collagens and cell adhesion-related proteins. Moreover, analysis of transcriptomic data of NP tissues from aged mice and degenerated human discs showed higher levels of unfolded protein response markers and decreased levels of matrix components. Our study shows, for the first time, that hypoxia and HIF-1α attenuate ER stress responses in NP cells, and ER stress promotes inefficient extracellular matrix secretion under hypoxia.