Unknown

Dataset Information

0

Exploring the Use of Natural Language Processing for Objective Assessment of Disorganized Speech in Schizophrenia.


ABSTRACT:

Objective

Measurement-based care tools in psychiatry are useful for symptom monitoring and detecting response to treatment, but methods for quick and objective measurement are lacking especially for acute psychosis. The aim of this study was to explore potential language markers, detected by natural language processing (NLP) methods, as a means to objectively measure the severity of psychotic symptoms of schizophrenia in an acute clinical setting.

Methods

Twenty-two speech samples were collected from seven participants who were hospitalized for schizophrenia, and their symptoms were evaluated over time with SAPS/SANS and TLC scales. Linguistic features were extracted from the speech data using machine learning techniques. Spearman's correlation was performed to examine the relationship between linguistic features and symptoms. Various machine learning models were evaluated by cross-validation methods for their ability to predict symptom severity using the linguistic markers.

Results

Reduced lexical richness and syntactic complexity were characteristic of negative symptoms, while lower content density and more repetitions in speech were predictors of positive symptoms. Machine learning models predicted severity of alogia, illogicality, poverty of speech, social inattentiveness, and TLC scores with up to 82% accuracy. Additionally, speech incoherence was quantifiable through language markers derived from NLP methods.

Conclusions

These preliminary findings suggest that NLP may be useful in identifying clinically relevant language markers of schizophrenia, which can enhance objectivity in symptom monitoring during hospitalization. Further work is needed to replicate these findings in a larger data set and explore methods for feasible implementation in practice.

SUBMITTER: Jeong L 

PROVIDER: S-EPMC10499191 | biostudies-literature | 2023

REPOSITORIES: biostudies-literature

altmetric image

Publications

Exploring the Use of Natural Language Processing for Objective Assessment of Disorganized Speech in Schizophrenia.

Jeong Lydia L   Lee Melissa M   Eyre Ben B   Balagopalan Aparna A   Rudzicz Frank F   Gabilondo Cedric C  

Psychiatric research and clinical practice 20230513 3


<h4>Objective</h4>Measurement-based care tools in psychiatry are useful for symptom monitoring and detecting response to treatment, but methods for quick and objective measurement are lacking especially for acute psychosis. The aim of this study was to explore potential language markers, detected by natural language processing (NLP) methods, as a means to objectively measure the severity of psychotic symptoms of schizophrenia in an acute clinical setting.<h4>Methods</h4>Twenty-two speech samples  ...[more]

Similar Datasets

| S-EPMC7486862 | biostudies-literature
| S-EPMC8178861 | biostudies-literature
| S-EPMC11848170 | biostudies-literature
2017-12-05 | GSE87656 | GEO
| S-EPMC10922291 | biostudies-literature
| S-EPMC11758559 | biostudies-literature
| S-EPMC10655903 | biostudies-literature
| S-EPMC9298308 | biostudies-literature
| S-EPMC7925601 | biostudies-literature
| S-EPMC10751112 | biostudies-literature