Project description:The demand for carbon dioxide (CO2) gas detection is increasing nowadays. However, its fast detection at room temperature (RT) is a major challenge. Graphene is found to be the most promising sensing material for RT detection, owing to its high surface area and electrical conductivity. In this work, we report a highly edge functionalized chemically synthesized reduced graphene oxide (rGO) thin films to achieve fast sensing response for CO2 gas at room temperature. The high amount of edge functional groups is prominent for the sorption of CO2 molecules. Initially, rGO is synthesized by reduction of GO using ascorbic acid (AA) as a reducing agent. Three different concentrations of rGO are prepared using three AA concentrations (25, 50, and 100 mg) to optimize the material properties such as functional groups and conductivity. Thin films of three different AA reduced rGO suspensions (AArGO25, AArGO50, AArGO100) are developed and later analyzed using standard FTIR, XRD, Raman, XPS, TEM, SEM, and four-point probe measurement techniques. We find that the highest edge functionality is achieved by the AArGO25 sample with a conductivity of ~1389 S/cm. The functionalized AArGO25 gas sensor shows recordable high sensing properties (response and recovery time) with good repeatability for CO2 at room temperature at 500 ppm and 50 ppm. Short response and recovery time of ~26 s and ~10 s, respectively, are achieved for 500 ppm CO2 gas with the sensitivity of ~50 Hz/µg. We believe that a highly functionalized AArGO CO2 gas sensor could be applicable for enhanced oil recovery, industrial and domestic safety applications.
Project description:Development of efficient CO sensors that can detect low concentration CO at room temperature is of prime importance. Herein, we present a Ta2O5-SnO2-PANI hybrid composite for the efficient sensing of CO at room temperature and at very low concentrations. The material was synthesized by the oxidative polymerization method. The structural and morphological characteristics of the nanostructured (Ta2O5-SnO2)-PANI hybrid composite were examined using p-XRD and FESEM techniques. The oxygen vacancies in the material were confirmed by XPS analysis. The hybrid material exhibited superior CO sensing performance with high sensitivity, low operating temperature, and fast response and recovery time compared to the individual counterparts. The enhanced sensing ability of the hybrid material is accredited to the synergistic properties such as conductivity of PANI, improved oxygen vacancies and the heterostructure formed between the PANI and the (Ta2O5-SnO2) composite. These remarkable features make TaSn : PANI a potential sensor at room temperature for sensing of low concentration CO.
Project description:Hydrogen (H2) is attracting attention as a renewable energy source in various fields. However, H2 has a potential danger that it can easily cause a backfire or explosion owing to minor external factors. Therefore, H2 gas monitoring is significant, particularly near the lower explosive limit. Herein, tin dioxide (SnO2) thin films were annealed at different times. The as-obtained thin films were used as sensing materials for H2 gas. Here, the performance of the SnO2 thin film sensor was studied to understand the effect of annealing and operating temperature conditions of gas sensors to further improve their performance. The gas sensing properties exhibited by the 3-h annealed SnO2 thin film showed the highest response compared to the unannealed SnO2 thin film by approximately 1.5 times. The as-deposited SnO2 thin film showed a high response and fast response time to 5% H2 gas at 300 °C of 257.34% and 3 s, respectively.
Project description:In this study, thin films composed of gold nanoparticles embedded in a copper oxide matrix (Au:CuO), manifesting Localized Surface Plasmon Resonance (LSPR) behavior, were produced by reactive DC magnetron sputtering and post-deposition in-air annealing. The effect of low-power Ar plasma etching on the surface properties of the plasmonic thin films was studied, envisaging its optimization as gas sensors. Thus, this work pretends to attain the maximum sensing response of the thin film system and to demonstrate its potential as a gas sensor. The results show that as Ar plasma treatment time increases, the host CuO matrix is etched while Au nanoparticles are uncovered, which leads to an enhancement of the sensitivity until a certain limit. Above such a time limit for plasma treatment, the CuO bonds are broken, and oxygen is removed from the film’s surface, resulting in a decrease in the gas sensing capabilities. Hence, the importance of the host matrix for the design of the LSPR sensor is also demonstrated. CuO not only provides stability and protection to the Au NPs but also promotes interactions between the thin film’s surface and the tested gases, thereby improving the nanocomposite film’s sensitivity. The optimized sensor sensitivity was estimated at 849 nm/RIU, which demonstrates that the Au-CuO thin films have the potential to be used as an LSPR platform for gas sensors.
Project description:There is great interest in developing a low-power gas sensing technology that can sensitively and selectively quantify the chemical composition of a target atmosphere. Nanomaterials have emerged as extremely promising candidates for this technology due to their inherent low-dimensional nature and high surface-to-volume ratio. Among these, nanoscale silicon is of great interest because pristine silicon is largely inert on its own in the context of gas sensing, unless functionalized with an appropriate gas-sensitive material. We report a chemical-sensitive field-effect transistor (CS-FET) platform based on 3.5-nm-thin silicon channel transistors. Using industry-compatible processing techniques, the conventional electrically active gate stack is replaced by an ultrathin chemical-sensitive layer that is electrically nonconducting and coupled to the 3.5-nm-thin silicon channel. We demonstrate a low-power, sensitive, and selective multiplexed gas sensing technology using this platform by detecting H2S, H2, and NO2 at room temperature for environment, health, and safety in the oil and gas industry, offering significant advantages over existing technology. Moreover, the system described here can be readily integrated with mobile electronics for distributed sensor networks in environmental pollution mapping and personal air-quality monitors.
Project description:Chiral magnets are promising materials for the realisation of high-density and low-power spintronic memory devices. For these future applications, a key requirement is the synthesis of appropriate materials in the form of thin films ordering well above room temperature. Driven by the Dzyaloshinskii-Moriya interaction, the cubic compound FeGe exhibits helimagnetism with a relatively high transition temperature of 278 K in bulk crystals. We demonstrate that this temperature can be enhanced significantly in thin films. Using x-ray scattering and ferromagnetic resonance techniques, we provide unambiguous experimental evidence for long-wavelength helimagnetic order at room temperature and magnetic properties similar to the bulk material. We obtain α intr = 0.0036 ± 0.0003 at 310 K for the intrinsic damping parameter. We probe the dynamics of the system by means of muon-spin rotation, indicating that the ground state is reached via a freezing out of slow dynamics. Our work paves the way towards the fabrication of thin films of chiral magnets that host certain spin whirls, so-called skyrmions, at room temperature and potentially offer integrability into modern electronics.
Project description:The NaMnF3 fluoride-perovskite has been found, theoretically, to be ferroelectric under epitaxial strain becoming a promising alternative to conventional oxides for multiferroic applications. Nevertheless, this fluoroperovskite has not been experimentally verified to be ferroelectric so far. Here we report signatures of room temperature ferroelectricity observed in perovskite NaMnF3 thin films grown on SrTiO3. Using piezoresponse force microscopy, we studied the evolution of ferroelectric polarization in response to external and built-in electric fields. Density functional theory calculations were also performed to help understand the strong competition between ferroelectric and paraelectric phases as well as the profound influences of strain. These results, together with the magnetic order previously reported in the same material, pave the way to future multiferroic and magnetoelectric investigations in fluoroperovskites.
Project description:Layered two-dimensional transition metal dichalcogenides, due to their semiconducting nature and large surface-to-volume ratio, have created their own niche in the field of gas sensing. Their large recovery time and accompanied incomplete recovery result in inferior sensing properties. Here, we report a composite-based strategy to overcome these issues. In this study, we report a facile double-step synthesis of a MoS2/SnO2 composite and its successful use as a superior room-temperature ammonia sensor. Contrary to the pristine nanosheet-based sensors, the devices made using the composite display superior gas sensing characteristics with faster response. Specifically, at room temperature (30° C), the composite-based sensor exhibited excellent sensitivity (10%) at an ammonia concentration down to 0.4 ppm along with the response and recovery times of 2 and 10 s, respectively. Moreover, the device also exhibited long-term durability, reproducibility, and selectivity toward ammonia against hydrogen sulfide, methanol, ethanol, benzene, acetone, and formaldehyde. Sensor devices made on quartz and alumina substrates with different roughnesses have yielded almost an identical response, except for slight variations in response and recovery transients. Further, to shed light on the underlying adsorption energetics and selectivity, density functional theory simulations were employed. The improved response and enhanced selectivity of the composite were explicitly discussed in terms of adsorption energy. Lowdin charge analysis was performed to understand the charge transfer mechanism between NH3, H2S, CH3OH, HCHO, and the underlying MoS2/SnO2 composite surface. The long-term durability of the sensor was evident from the stable response curves even after 2 months. These results indicate that hydrothermally synthesized MoS2/SnO2 composite-based gas sensors can be used as a promising sensing material for monitoring ammonia gas in real fields.
Project description:Morphology and structure play a crucial role in influencing the performance of gas sensors. Hollow structures, in particular, not only increase the specific surface area of the material but also enhance the collision frequency of gases within the shell, and have been studied in depth in the field of gas sensing. Taking SnO2 as an illustrative example, a dual-shell structure SnO2 (D-SnO2) was prepared. D-SnO2@Polyaniline (PANI) (DSPx, x represents D-SnO2 molar content) composites were synthesized via the in situ oxidative polymerization method, and simultaneously deposited onto a polyethylene terephthalate (PET) substrate to fabricate an electrode-free, flexible sensor. The impact of the SnO2 content on the sensing performance of the DSPx-based sensor for NH3 detection at room temperature was discussed. The results showed that the response of a 20 mol% D-SnO2@PANI (DSP20) sensor to 100 ppm NH3 at room temperature is 37.92, which is 5.1 times higher than that of a pristine PANI sensor. Moreover, the DSP20 sensor demonstrated a rapid response and recovery rate at the concentration of 10 ppm NH3, with response and recovery times of 182 s and 86 s.
Project description:Molybdenum disulfide (MoS2) and nanocrystalline diamond (NCD) have attracted considerable attention due to their unique electronic structure and extraordinary physical and chemical properties in many applications, including sensor devices in gas sensing applications. Combining MoS2 and H-terminated NCD (H-NCD) in a heterostructure design can improve the sensing performance due to their mutual advantages. In this study, the synthesis of MoS2 and H-NCD thin films using appropriate physical/chemical deposition methods and their analysis in terms of gas sensing properties in their individual and combined forms are demonstrated. The sensitivity and time domain characteristics of the sensors were investigated for three gases: oxidizing NO2, reducing NH3, and neutral synthetic air. It was observed that the MoS2/H-NCD heterostructure-based gas sensor exhibits improved sensitivity to oxidizing NO2 (0.157%·ppm-1) and reducing NH3 (0.188%·ppm-1) gases compared to pure active materials (pure MoS2 achieves responses of 0.018%·ppm-1 for NO2 and -0.0072%·ppm-1 for NH3, respectively, and almost no response for pure H-NCD at room temperature). Different gas interaction model pathways were developed to describe the current flow mechanism through the sensing area with/without the heterostructure. The gas interaction model independently considers the influence of each material (chemisorption for MoS2 and surface doping mechanism for H-NCD) as well as the current flow mechanism through the formed P-N heterojunction.