Project description:A new, very efficient, class of thioglycoside substrates has been found for β-glucosidase. While thioglycosides are usually resistant to hydrolysis, even in the presence of acids or most glycohydrolases, the β-D-glucopyranosides of 2-mercaptobenzimidazole (GlcSBiz) and 2-mercaptobenzoxazole (GlcSBox) have been found to be excellent substrates for β-glucosidase from both sweet almond (a family 1 glycohydrolase) and Aspergillus niger (a family 3 glycohydrolase), reacting nearly as well as p-nitrophenyl β-D-glucoside. The enzyme-catalyzed hydrolysis of GlcSBiz proceeds with retention of configuration. As with the (1000-fold slower) hydrolysis of phenyl thioglucosides catalyzed by the almond enzyme, the pL (pH/pD)-independent kcat/KM does not show a detectable solvent deuterium kinetic isotope effect (SKIE), but unlike the hydrolysis of phenyl thioglucosides, a modest SKIE is seen on kcat [(D2O)kcat=1.28 (±0.06)] at the pL optimum (5.5≤pL≤6.6). A solvent isotope effect is also seen on the KM for the N-methyl analog of GlcSBiz. These results suggest that the mechanism for the hydrolysis of the β-thioglucoside of 2-mercaptobenzimidazole and of 2-mercaptobenzoxazole involves remote site protonation (at the ring nitrogen) followed by cleavage of the thioglucosidic bond resulting in the thione product.
Project description:How proteins are trafficked, folded, and assembled into functional units in the cell envelope of Gram-negative bacteria is of significant interest. A number of chaperones have been identified, however, the molecular roles of these chaperones are often enigmatic because it has been challenging to assign substrates. Recently we discovered a novel periplasmic chaperone, called YfgM, which associates with PpiD and the SecYEG translocon and operates in a network that contains Skp and SurA. The aim of the study presented here was to identify putative substrates of YfgM. We reasoned that substrates would be incorrectly folded or trafficked when YfgM was absent from the cell, and thus more prone to proteolysis (the loss-of-function rationale). We therefore used a comparative proteomic approach to identify cell envelope proteins that were lower in abundance in a strain lacking yfgM, and strains lacking yfgM together with either skp or surA. Sixteen putative substrates were identified. The list contained nine inner membrane proteins (CusS, EvgS, MalF, OsmC, TdcB, TdcC, WrbA, YfhB, and YtfH) and seven periplasmic proteins (HdeA, HdeB, AnsB, Ggt, MalE, YcgK, and YnjE), but it did not include any lipoproteins or outer membrane proteins. Significantly, AnsB (an asparaginase) and HdeB (a protein involved in the acid stress response), were lower in abundance in all three strains lacking yfgM. For both genes, we ruled out the possibility that they were transcriptionally down-regulated, so it is highly likely that the corresponding proteins are misfolded/mistargeted and turned-over in the absence of YfgM. For HdeB we validated this conclusion in a pulse-chase experiment. The identification of HdeB and other cell envelope proteins as potential substrates will be a valuable resource for follow-up experiments that aim to delineate molecular the function of YfgM.
Project description:β-Glucosidases are key enzymes in the process of cellulose utilization. It is the last enzyme in the cellulose hydrolysis chain, which converts cellobiose to glucose. Since cellobiose is known to have a feedback inhibitory effect on a variety of cellulases, β-glucosidase can prevent this inhibition by hydrolyzing cellobiose to non-inhibitory glucose. While the optimal temperature of the Clostridium thermocellum cellulosome is 70 °C, C. thermocellum β-glucosidase A is almost inactive at such high temperatures. Thus, in the current study, a random mutagenesis directed evolutionary approach was conducted to produce a thermostable mutant with Kcat and Km, similar to those of the wild-type enzyme. The resultant mutant contained two mutations, A17S and K268N, but only the former was found to affect thermostability, whereby the inflection temperature (Ti) was increased by 6.4 °C. A17 is located near the central cavity of the native enzyme. Interestingly, multiple alignments revealed that position 17 is relatively conserved, whereby alanine is replaced only by serine. Upon the addition of the thermostable mutant to the C. thermocellum secretome for subsequent hydrolysis of microcrystalline cellulose at 70 °C, a higher soluble glucose yield (243%) was obtained compared to the activity of the secretome supplemented with the wild-type enzyme.
Project description:In the feed industry, β-glucosidase has been widely used in the conversion of inactive and bounded soybean isoflavones into active aglycones. However, the conversion is frequently inhibited by the high concentration of intestinal glucose in monogastric animals. In this study, a GH1 β-glucosidase (AsBG1) with high specific activity, thermostability and glucose tolerance (IC50 = 800 mM) was identified. It showed great glucose tolerance against substrates with hydrophobic aryl ligands (such as pNPG and soy isoflavones). Using soybean meal as the substrate, AsBG1 exhibited higher hydrolysis efficiency than the GH3 counterpart Bgl3A with or without the presence of glucose in the reaction system. Furthermore, it is the first time to find that the endogenous β-glucosidase of soybean meal, mostly belonging to GH3, plays a role in the hydrolysis of soybean isoflavones and is highly sensitive to glucose. These findings lead to a conclusion that the GH1 rather than GH3 β-glucosidase has prosperous application advantages in the conversion of soybean isoflavones in the feed industry.
Project description:Backgroundβ-Glucosidase has attracted substantial attention in the scientific community because of its pivotal role in cellulose degradation, glycoside transformation and many other industrial processes. However, the tedious and costly expression and purification procedures have severely thwarted the industrial applications of β-glucosidase. Thus development of new strategies to express β-glucosidases with cost-effective and simple procedure to meet the increasing demands on enzymes for biocatalysis is of paramount importance.ResultsLight activated cassette YF1/FixJ and the SRRz lysis system were successfully constructed to produce Bgl1A(A24S/F297Y), a mutant β-glucosidase tolerant to both glucose and ethanol. By optimizing the parameters for light induction, Bgl1A(A24S/F297Y) activity reached 33.22 ± 2.0 U/mL and 249.92 ± 12.25 U/mL in 250-mL flask and 3-L fermentation tank, respectively, comparable to the controls of 34.02 ± 1.96 U/mL and 322.21 ± 10.16 U/mL under similar culture conditions with IPTG induction. To further simplify the production of our target protein, the SRRz lysis gene cassette from bacteriophage Lambda was introduced to trigger cell autolysis. As high as 84.53 ± 6.79% and 77.21 ± 4.79% of the total β-glucosidase were released into the lysate after cell autolysis in 250 mL flasks and 3-L scale fermentation with lactose as inducer of SRRz. In order to reduce the cost of protein purification, a cellulose-binding module (CBM) from Clostridium thermocellum was fused into the C-terminal of Bgl1A(A24S/F297Y) and cellulose was used as an economic material to adsorb the fusion enzyme from the lysate. The yield of the fusion protein could reach 92.20 ± 2.27% after one-hour adsorption at 25 °C.ConclusionsWe have developed an efficient and inexpensive way to produce β-glucosidase for potential industrial applications by using the combination of light induction, cell autolysis, and CBM purification strategy.
Project description:Beta-glucosidase 1 (GBA1; lysosomal glucocerebrosidase) and β-glucosidase 2 (GBA2, non-lysosomal glucocerebrosidase) both have glucosylceramide as a main natural substrate. The enzyme-deficient conditions with glucosylceramide accumulation are Gaucher disease (GBA-/- in humans), modelled by the Gba-/- mouse, and the syndrome with male infertility in the Gba2-/- mouse, respectively. Before the leading role of glucosylceramide was recognised for both deficient conditions, bile acid-3-O-β-glucoside (BG), another natural substrate, was viewed as the main substrate of GBA2. Given that GBA2 hydrolyses both BG and glucosylceramide, it was asked whether vice versa GBA1 hydrolyses both glucosylceramide and BG. Here we show that GBA1 also hydrolyses BG. We compared the residual BG hydrolysing activities in the GBA1-/-, Gba1-/- conditions (where GBA2 is the almost only active β-glucosidase) and those in the Gba2-/- condition (GBA1 active), with wild-type activities, but we used also the GBA1 inhibitor isofagomine. GBA1 and GBA2 activities had characteristic differences between the studied fibroblast, liver and brain samples. Independently, the hydrolysis of BG by pure recombinant GBA1 was shown. The fact that both GBA1 and GBA2 are glucocerebrosidases as well as bile acid β-glucosidases raises the question, why lysosomal accumulation of glucosylceramide in GBA1 deficiency, and extra-lysosomal accumulation in GBA2 deficiency, are not associated with an accumulation of BG in either condition.
Project description:Investigation of a strategy to streamline the synthesis of peptides containing α,β-dehydroamino acids (ΔAAs) is reported. The key step involves generating the alkene moiety via elimination of a suitable precursor after it has been inserted into a peptide chain. This process obviates the need to prepare ΔAA-containing azlactone dipeptides to facilitate coupling of these residues. Z-dehydroaminobutyric acid (Z-ΔAbu) could be constructed most efficiently via EDC/CuCl-mediated dehydration of Thr. Formation of Z-ΔPhe by this or other dehydration methods was unsuccessful. Production of the bulky ΔVal residue could be accomplished by DAST-promoted dehydrations of β-OHVal or by DBU-triggered eliminations of sulfonium ions derived from penicillamine derivatives. However, competitive formation of an oxazoline byproduct remains problematic.
Project description:We have explored in detail the determinants of specificity for the hydrolysis by human tissue kallikrein (hK1) of substrates containing the Phe-Phe amino acid pair, after which hK1 cleaves kallistatin (human kallikrein-binding protein), a specific serpin for this protease, as well as somatostatin 1-14. Internally quenched fluorogenic peptides were synthesized with the general structure Abz-peptidyl-EDDnp [Abz, o-aminobenzoic acid; EDDnp, N-(2, 4-dinitrophenyl)ethylenediamine], based on the natural reactive-centre loop sequence of kallistatin from P9 to P'13, and the kinetic parameters of their hydrolysis by hK1 were determined. All these peptides were cleaved after the Phe-Phe pair. For comparison, we have also examined peptides containing the reactive-centre loop sequences of human protein-C inhibitor (PCI) and rat kallikrein-binding protein, which were hydrolysed after Phe-Arg and Leu-Lys bonds, respectively. Hybrid peptides containing kallistatin-PCI sequences showed that the efficiency of hK1 activity on the peptides containing kallistatin and PCI sequences depended on both the nature of the P1 amino acid as well as on residues at the P- and P'-sides. Moreover, we have made systematic modifications on the hydrophobic pair Phe-Phe, and on Lys and Ile at the P3 and P4 positions according to the peptide substrate, Abz-AIKFFSRQ-EDDnp. All together, we concluded that tissue kallikrein was very effective on short substrates that are cleaved after the Phe-Arg pair; however, hydrolysis after Phe-Phe or other hydrophobic pairs of amino acids was more restrictive, requiring additional enzyme-substrate interaction and/or particular substrate conformations.
Project description:By microscopic analysis of fluorescent-labeled GalR, a regulon-specific transcription factor in Escherichia coli, we observed that GalR is present in the cell as aggregates (one to three fluorescent foci per cell) in nongrowing cells. To investigate whether these foci represent GalR-mediated association of some of the GalR specific DNA binding sites (gal operators), we used the chromosome conformation capture (3C) method in vivo. Our 3C data demonstrate that, in stationary phase cells, many of the operators distributed around the chromosome are interacted. By the use of atomic force microscopy, we showed that the observed remote chromosomal interconnections occur by direct interactions between DNA-bound GalR not involving any other factors. Mini plasmid DNA circles with three or five operators positioned at defined loci showed GalR-dependent loops of expected sizes of the intervening DNA segments. Our findings provide unique evidence that a transcription factor participates in organizing the chromosome in a three-dimensional structure. We believe that these chromosomal connections increase local concentration of GalR for coordinating the regulation of widely separated target genes, and organize the chromosome structure in space, thereby likely contributing to chromosome compaction.