Unknown

Dataset Information

0

Drug delivery by sonosensitive liposome and microbubble with acoustic-lens attached ultrasound: an in vivo feasibility study in a murine melanoma model.


ABSTRACT: Conventional chemotherapy methods have adverse off-target effects and low therapeutic efficiencies of drug release in target tumors. In this study, we proposed a combination therapy of doxorubicin (DOX)-loaded ultrasound (US)-sensitive liposomal nanocarriers (IMP301), microbubbles (MBs) under focused US exposure using convex acoustic lens-attached US (LENS) to tumor treatment. The therapeutic effects of each treatment in a murine melanoma model were evaluated using contrast-enhanced US (CEUS) and micro-computed tomography (micro-CT) imaging, bioluminescence and confocal microscopy imaging, and liquid chromatography-mass spectroscopy (LC/MS) analysis. Tumor-bearing mice were randomly assigned to one of the following groups: (1) G1: IMP301 only (n = 9); (2) G2: IMP301 + LENS (n = 9); (3) G3: IMP301 + MB + LENS (n = 9); (4) G4: DOXIL only (n = 9); and (5) G5: IMP301 without DOXIL group as a control group (n = 4). Ten days after tumor injection, tumor-bearing mice were treated according to each treatment strategy on 10th, 12th, and 14th days from the day of tumor injection. The CEUS images of the tumors in the murine melanoma model clearly showed increased echo signal intensity from MBs as resonant US scattering. The relative tumor volume of the G2 and G3 groups on the micro-CT imaging showed inhibited tumor growth than the reference baseline of the G5 group. DOX signals on bioluminescence and confocal microscopy imaging were mainly located at the tumor sites. LC/MS showed prominently higher intratumoral DOX concentration in the G3 group than in other treated groups. Therefore, this study effectively demonstrates the feasibility of the synergistic combination of IMP301, MBs, and LENS-application for tumor-targeted treatment. Thus, this study can enable efficient tumor-targeted treatment by combining therapy such as IMP301 + MBs + LENS-application.

SUBMITTER: Park JH 

PROVIDER: S-EPMC10517155 | biostudies-literature | 2023 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Drug delivery by sonosensitive liposome and microbubble with acoustic-lens attached ultrasound: an in vivo feasibility study in a murine melanoma model.

Park Jun Hong JH   Lee Byung Chul BC   Seo Young Chan YC   Kim Jung Hoon JH   Kim Da Jung DJ   Lee Hak Jong HJ   Moon Hyungwon H   Lee Seunghyun S  

Scientific reports 20230922 1


Conventional chemotherapy methods have adverse off-target effects and low therapeutic efficiencies of drug release in target tumors. In this study, we proposed a combination therapy of doxorubicin (DOX)-loaded ultrasound (US)-sensitive liposomal nanocarriers (IMP301), microbubbles (MBs) under focused US exposure using convex acoustic lens-attached US (LENS) to tumor treatment. The therapeutic effects of each treatment in a murine melanoma model were evaluated using contrast-enhanced US (CEUS) an  ...[more]

Similar Datasets

| S-EPMC4165777 | biostudies-literature
| S-EPMC5826859 | biostudies-literature
| S-EPMC5378755 | biostudies-literature
| S-EPMC9852793 | biostudies-literature
| S-EPMC10229106 | biostudies-literature
| S-EPMC8117937 | biostudies-literature
| S-EPMC5996352 | biostudies-literature
| S-EPMC10404234 | biostudies-literature
| S-EPMC3529965 | biostudies-literature
| S-EPMC4498921 | biostudies-literature