Chiral-at-Ruthenium-SEGPHOS Catalysts Display Diastereomer-Dependent Regioselectivity: Enantioselective Isoprene-Mediated Carbonyl tert-Prenylation via Halide Counterion Effects.
Ontology highlight
ABSTRACT: The first correlation between metal-centered stereogenicity and regioselectivity in a catalytic process is described. Alternate pseudo-diastereomeric chiral-at-ruthenium complexes of the type RuX(CO)[η3-prenyl][(S)-SEGPHOS] form in a halide-dependent manner and display divergent regioselectivity in catalytic C-C couplings of isoprene to alcohol proelectrophiles via hydrogen autotransfer. Whereas the chloride-bound ruthenium-SEGPHOS complex prefers a trans-relationship between the halide and carbonyl ligands and delivers products of carbonyl sec-prenylation, the iodide-bound ruthenium-SEGPHOS complex prefers a cis-relationship between the halide and carbonyl ligands and delivers products of carbonyl tert-prenylation. The chloride- and iodide-bound ruthenium-SEGPHOS complexes were characterized in solution and solid phase by 31P NMR and X-ray diffraction. Density functional theory calculations of the iodide-bound catalyst implicate a Curtin-Hammett-type scenario in which the transition states for aldehyde coordination from an equilibrating mixture of sec- and tert-prenylruthenium complexes are rate- and product-determining. Thus, control of metal-centered diastereoselectivity has unlocked the first catalytically enantioselective isoprene-mediated carbonyl tert-prenylations.
SUBMITTER: Shezaf JZ
PROVIDER: S-EPMC10530498 | biostudies-literature | 2023 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA