Project description:Pteridium aquilinum (L.) Kuhn (Pteridaceae family) has been widely used as a food and medicine in China and Korea. Previous studies indicate that P. aquilinum contains a variety of bioactive chemical components such as flavonoids, phenols, terpenoids, saponins, polysaccharides, and so on. In the present study, a novel polysaccharide (named as PAP-3) with average molecular weight of 2.14 × 105 Da was obtained from P. aquilinum. The structure was studied through physicochemical and spectroscopic analysis. The results indicated that PAP-3 consists of arabinose, rhamnose, fucose, galactose, mannose, and xylose in a molar ratio of 1.58:1.00:3.26:4.57:4.81:3.33. The polysaccharide is mainly composed of (1→2)-linked xylose and (1→3,6)-linked mannose on the main chain, with (1→2)-linked xylose, (1→6)-linked mannose, and (1→6)- and (1→3,6)-linked galactose as side chains. Galactose, fucose, and xylose are located at the end of the side chains. The in vitro immunomodulatory and antioxidant activities were assayed. PAP-3 has strong free-radical scavenging activity on DPPH and ABTS radicals and significant immunomodulatory activity on RAW264.7 cells. These data provide useful information for further study on the polysaccharides of P. aquilinum and their applications in the food and medical industries.
Project description:Antioxidant compounds, including polyphenols, have therapeutic effects because of their anti-inflammatory, antihypertensive, antithrombotic and antiproliferative properties. They play important roles in protecting the cardiovascular and neurological systems, by having preventive or protective effects against free radicals produced by either normal or pathological metabolism in such systems. For instance, resveratrol, a well-known potent antioxidant, has a counteracting effect on the excess of reactive oxygen species (ROS) and has a number of therapeutic benefits, like anti-inflammatory, anti-cancer and cardioprotective activities. Based on previous work from our group, and on the most frequent OH substitutions of natural polyphenols, we designed two series of synthetically accessible bis-polyhydroxyphenyl derivatives, separated by amide or urea linkers. These compounds exhibit high antioxidant ability (oxygen radical absorbance capacity (ORAC) assay) and interesting radical scavenging activity (RSA) values (2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and α,α-diphenyl-β-picrylhydrazyl (DPPH) tests). Some of the best polyphenols were evaluated in two biological systems, endothelial cells (in vitro) and whole aorta (ex vivo), highly susceptible for the deleterious effects of prooxidants under different inflammatory conditions, showing protection against oxidative stress induced by inflammatory stimuli relevant in cardiovascular diseases, i.e., Angiotensin II and IL-1β. Selected compounds also showed strong in vivo antioxidant properties when evaluated in the model organism Saccharomyces cerevisiae.
Project description:In recent years, extensive research has focused on cannabidiol (CBD), a well-studied non-psychoactive component of the plant-derived cannabinoids. CBD has shown significant therapeutic potential for treating various diseases and disorders, including antioxidants and anti-inflammatory effects. Due to the promising therapeutic effect of CBD in a wide variety of diseases, synthetic derivatization of this compound has attracted the attention of drug discovery in both industry and academia. In the current research, we focused on the derivatization of CBD by introducing Schiff base moieties, particularly (thio)-semicarbazide and aminoguanidine motifs, at the 3-position of the olivetolic ring. We have designed, synthesized, and characterized new derivatives based on CBD's framework, specifically aminoguanylhydrazone- and (thio)-semicarbazones-CBD-aldehyde compounds. Their antioxidant potential was assessed using FRAP and DPPH assays, alongside an evaluation of their effect on LDL oxidation induced by Cu2+ and AAPH. Our findings suggest that incorporating the thiosemicarbazide motif into the CBD framework produces a potent antioxidant, warranting further investigation.
Project description:In this research, the ultrasound-assisted extraction (UAE) conditions of the water-soluble polysaccharide (FCPS) from Ficus carica fruits were optimized using the response surface methodology. The optimal FCPS yield was 7.97 % achieved by conducting ultrasound-assisted extraction four times at a solid-liquid ratio of 1:20 (g/mL) and an ultrasound temperature of 70 °C. Then, the structure, antioxidant properties, hypoglycemic effects, and immunomodulatory activities of FCPS were evaluated. FCPS was characterized as irregular, rough-surfaced, flaky materials consisting of pyran-type polysaccharides with α- and β-glycosidic linkages, and composed of multiple monosaccharides and only one homogeneous concentrated polysaccharide component (FCPS1) with a molecular weight of 4.224 × 104 Da. The results suggested FCPS exhibited remarkable antioxidant activity in vitro, as evidenced by improved cell viability and reduced the reactive oxygen species (ROS) levels. Meanwhile, FCPS effectively improved liver-related insulin resistance by promoting glucose consumption in hepatocytes and activated the immune response through activation of murine bone marrow-derived dendritic cells (DCs) and upregulation of interleukin 6 (IL6) and interleukin 12 (IL-12) expression. The findings demonstrate the efficacy of the UAE technique in isolating FCPS with biological functionality and FCPS could potentially serve as a beneficial organic antioxidant source and functional food, carrying important implications for future studies.
Project description:Phosphodiesterase 10 is a promising target for the treatment of a series of central nervous system (CNS) diseases. Imbalance between oxidative stress and antioxidant defense systems as a universal condition in neurodegenerative disorders is widely studied as a potential therapy for CNS diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). To discover multifunctional pharmaceuticals as a treatment for neurodegenerative diseases, a series of quinazoline-based derivatives with PDE10 inhibitory activities and antioxidant activities were designed and synthesized. Nine out of 13 designed compounds showed good PDE10 inhibition at the concentration of 1.0 μM. Among these compounds, eight exhibited moderate to excellent antioxidant activity with ORAC (oxygen radical absorbance capacity) value above 1.0. Molecular docking was performed for better understanding of the binding patterns of these compounds with PDE10. Compound 11e, which showed remarkable inhibitory activity against PDE10 and antioxidant activity may serve as a lead for the further modification.
Project description:A series of five new 2-(1-benzofuran-2-yl)-2-oxoethyl 4-(un/substituted)benzoates 4(a-e), with the general formula of C₈H₅O(C=O)CH₂O(C=O)C₆H₄X, X = H, Cl, CH₃, OCH₃ or NO₂, was synthesized in high purity and good yield under mild conditions. The synthesized products 4(a-e) were characterized by FTIR, ¹H-, (13)C- and ¹H-(13)C HMQC NMR spectroscopic analysis and their 3D structures were confirmed by single-crystal X-ray diffraction studies. These compounds were screened for their antimicrobial and antioxidant activities. The tested compounds showed antimicrobial ability in the order of 4b < 4a < 4c < 4d < 4e and the highest potency with minimum inhibition concentration (MIC) value of 125 µg/mL was observed for 4e. The results of antioxidant activities revealed the highest activity for compound 4e (32.62% ± 1.34%) in diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, 4d (31.01% ± 4.35%) in ferric reducing antioxidant power (FRAP) assay and 4a (27.11% ± 1.06%) in metal chelating (MC) activity.
Project description:Abundant nanostructures have been constantly found in various foods, like vinegar, tea, coffee, and milk. However, these structures largely remain unexplored and even been eliminated for stability reasons in food industry. Here we report the isolation, characterization, and antioxidant activities of food nanoparticles (NPs) carrying polyphenols from Chinese rice vinegar. Using a gel-chromatography-based isolation protocol, the vinegar was separated into three major fractions. They were identified as spherical NPs (P1), lollipop-like NPs (P2) and spherical microparticles (P3) with average hydrodynamic diameter of 210, 245,1643 nm, separately. The former two fractions accounted for the major parts of dry matter in the vinegar. The P1-NPs fraction was composed of proteins, carbohydrates, and a high number of polyphenols (15 wt%), demonstrated potent antioxidant activity as determined by ABTS and ORAC assays. Moreover, they effectively quenched peroxyl free radicals in peritoneal macrophages and promoted cellular growth. The P2 fraction contained majority of organic acids, esters and mineral elements of the vinegar. It demonstrated the NPs are bioactive units of the rice vinegar, inspiring the development of novel functional nanomaterials with nutraceutical and pharmaceutical applications.
Project description:Phyllanthus emblica L. is a tropical deciduous tree producing edible berries with potential medicinal value. In this study, a novel water-soluble phyllanthus emblica polysaccharide (PEP) from the berries was isolated by precipitation and purification, and analyzed for its structure features. The results showed that PEP was a α-pyran acidic heteropolysaccharide with a molecular weight of 1.31 × 105 Da, which included galacturonic acid, galactose, rhamnose, and arabinose with a molar ratio of 3.21:6.59:1:0.23. Furthermore, the antioxidant activities of PEP were determined and showed remarkable antioxidant capacities in DPPH, superoxide anion- and hydroxyl-radical scavenging, ferric-reducing antioxidant power, and lipid peroxidation inhibition. This work indicated that PEP as a natural antioxidant agent from the berries of Phyllanthus emblica L. had potential application for developing valuable nutraceutical in food industry.
Project description:BackgroundBecause of their phylogenetic position and unique characteristics of their biology and life cycle, ferns represent an important lineage for studying the evolution of land plants. Large and complex genomes in ferns combined with the absence of economically important species have been a barrier to the development of genomic resources. However, high throughput sequencing technologies are now being widely applied to non-model species. We leveraged the Roche 454 GS-FLX Titanium pyrosequencing platform in sequencing the gametophyte transcriptome of bracken fern (Pteridium aquilinum) to develop genomic resources for evolutionary studies.Results681,722 quality and adapter trimmed reads totaling 254 Mbp were assembled de novo into 56,256 unique sequences (i.e. unigenes) with a mean length of 547.2 bp and a total assembly size of 30.8 Mbp with an average read-depth coverage of 7.0×. We estimate that 87% of the complete transcriptome has been sequenced and that all transcripts have been tagged. 61.8% of the unigenes had blastx hits in the NCBI nr protein database, representing 22,596 unique best hits. The longest open reading frame in 52.2% of the unigenes had positive domain matches in InterProScan searches. We assigned 46.2% of the unigenes with a GO functional annotation and 16.0% with an enzyme code annotation. Enzyme codes were used to retrieve and color KEGG pathway maps. A comparative genomics approach revealed a substantial proportion of genes expressed in bracken gametophytes to be shared across the genomes of Arabidopsis, Selaginella and Physcomitrella, and identified a substantial number of potentially novel fern genes. By comparing the list of Arabidopsis genes identified by blast with a list of gametophyte-specific Arabidopsis genes taken from the literature, we identified a set of potentially conserved gametophyte specific genes. We screened unigenes for repetitive sequences to identify 548 potentially-amplifiable simple sequence repeat loci and 689 expressed transposable elements.ConclusionsThis study is the first comprehensive transcriptome analysis for a fern and represents an important scientific resource for comparative evolutionary and functional genomics studies in land plants. We demonstrate the utility of high-throughput sequencing of a normalized cDNA library for de novo transcriptome characterization and gene discovery in a non-model plant.
Project description:Eugenol is the major component of clove essential oil and has demonstrated relevant biological potential with well-known antimicrobial and antioxidant action. Therefore, this work carried out the synthesis, purification, characterization, and evaluation of the antioxidant and antibacterial potential of 19 eugenol derivatives. The derivatives were produced by esterification reactions in the hydroxyl group (-OH) of eugenol with different carboxylic acids and also by addition reactions in the double bond of the allyl group. The derivatives had a promising antibacterial potential, including a lower minimum inhibitory concentration of 500 μg/mL than eugenol (1000 μg/mL). In addition, the derivatives were active against bacterial strains (Escherichia coli, Staphylococcus aureus) that eugenol itself showed no activity, thus increasing the spectrum of antibacterial action. As for the antioxidant activity, it was observed that the derivatives that involved esterification reactions in the hydroxyl group (-OH) of the eugenol molecule's phenol resulted in a significant reduction of the antioxidant action (IC50 > 100 μg/mL) when compared with the eugenol precursor molecule (IC50 = 4.38 μg/mL). On the other hand, the structural changes located in the double bond affected much more smoothly the capacity of capturing radicals than the starting molecule, also being obtained derivatives with proximal antioxidant capacity (IC50 = 19.30 μg/mL) to commercial standards such as Trolox (IC50 = 16.00 μg/mL).